Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922211

RESUMO

4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic ß-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic ß-cells and elucidated the cellular mechanism involved in MBP-induced ß-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of ß-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on ß-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fenóis/toxicidade , Animais , Sobrevivência Celular , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Transdução de Sinais
2.
Toxicology ; 425: 152252, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348969

RESUMO

Cadmium (Cd) is known to be ranked the 7th hazardous substance in the Substance Priority List by Agency for Toxic Substances and Disease Registry. The experimental and epidemiological data have suggested that Cd is linked to the development of diabetes mellitus (DM). The molecular mechanism of Cd on the pancreatic ß-cell cytotoxicity still remains unclear. Evidence has pointed toward that Ca2+ is an important regulator of toxic insult-induced ß-cell cytotoxicity. The role of Ca2+ in the Cd-induced ß-cell cytotoxicity is still unknown. In this study, we found that Cd exposure significantly inhibited insulin secretion and cell viability in the pancreatic ß-cell-derived RIN-m5F cells. Cd exposure induced apoptotic events, including the increased populations of apoptotic cells and sub-G1 hypodiploid cells, and caspase-3/-7/-9 and poly (ADP-ribose) polymerase (PARP) activation, which largely depended on the activation of c-Jun N-terminal kinase (JNK) and C/EBP homologous protein (CHOP). Transfection with siRNAs for JNK and CHOP or pretreatment with specific pharmacological inhibitor of JNK (SP600125) in ß-cells effectively prevented the Cd-induced insulin secretion dysfunction and apoptosis. JNK-specific siRNA dramatically suppressed Cd-induced JNK phosphorylation and CHOP protein expression, but JNK phosphorylation could not be inhibited by CHOP-specific siRNA. Furthermore, Cd exposure significantly increased the intracellular calcium ([Ca2+]i) levels. Buffering the Ca2+ response with BAPTA/AM effectively abrogated the Cd-induced [Ca2+]i elevation, insulin secretion dysfunction, apoptosis, and protein expression of JNK phosphorylation and CHOP activation. Taken together, these findings demonstrated that Cd exposure exerts ß-cell death via a [Ca2+]i-dependent JNK activation-activated downstream CHOP-related apoptotic signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Animais , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular , Ratos
3.
J Chin Med Assoc ; 69(2): 95-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16570579

RESUMO

Embedded finger-ring injury is not usually encountered in clinical practice, and most patients present with psychiatric or physical/mental impairment. We report herein an 18-year-old male amphetamine abuser who presented to our emergency department (ED) for embedded finger-ring injury over his left middle finger. The embedded ring was removed in the ED under heavy sedation, and the wound healed uneventfully over 2 weeks. Thereafter, the young man received psychiatric treatment. Embedded finger-ring injury has never been reported in a drug abuser before.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/psicologia , Traumatismos dos Dedos/etiologia , Adolescente , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA