Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770200

RESUMO

Based on multi-component alloys using precipitation hardening, a Cu-Ni-Si-Fe copper alloy was prepared and studied for hardness, electrical conductivity, and wear resistance. Copper Nickel Silicon (Cu-Ni-Si) intermetallic compounds were observed as precipitates, leading to an increase in mechanical and physical properties. Further, the addition of Fe was discussed in intermetallic compound formation. Moreover, microstructures, age hardening, and dry sliding wear resistances of the present alloy were analyzed and compared with C17200 beryllium copper. The results showed that the present alloy performed extraordinarily, with 314 HV in hardness and 22.2 %IACS in conductivity, which is almost similar to C17200 alloy. Furthermore, the dry sliding wear resistance of the present alloy was 2199.3 (m/MPa·mm3) at an ambient temperature, leading to an improvement of 208% compared with the C17200 alloy.

2.
iScience ; 25(5): 104248, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573191

RESUMO

Bulk aluminum rarely forms deformation or annealing twins owing to its high stacking fault energy. We report a novel twinning mechanism mediated by dynamic recrystallization in 6N pure aluminum under high strain rate (∼1.3 × 104 s-1) impact at a cryogenic temperature (77 K). Discontinuous dynamic recrystallization occurs during rapid severe plastic deformation and generates inhomogeneous microstructures exhibiting low-angle and high-angle grain boundaries. Unexpectedly, Σ3 twin boundaries were able to develop during dynamic recrystallization. Although these recrystallization twins have similar morphology as that of annealing twins, their formation relies on deformation activation instead of thermal activation, which was suppressed by the cryogenic experiment. Besides, strong orientation dependence was observed for formation of these novel twins. Beyond annealing and deformation twin, deformation-activated recrystallization twin is a new path for pure aluminum twinning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...