Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 7785-7801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144512

RESUMO

Background: High-level low-density lipoprotein cholesterol (LDL-C) plays a vital role in the development of atherosclerotic cardiovascular disease. Low-density lipoprotein receptors (LDLRs) are scavengers that bind to LDL-C in the liver. LDLR proteins are regulated by proprotein convertase subtilisin/kexin type 9 (PCSK9), which mediates the degradation of LDLR and adjusts the level of the plasma LDL-C. The low expression of PCSK9 leads to the up-regulation of liver LDLRs and the reduction of plasma LDL-C. Hepatocytes are attractive targets for small interfering RNA (siRNA) delivery to silence Pcsk9 gene, due to their significant role in LDL-C regulation. Methods: Here, a type of liver-specific ionizable lipid nanoparticles is developed for efficient siRNA delivery. This type of nanoparticles shows high stability, enabling efficient cargo delivery specifically to hepatocytes, and a membrane-active polymer that reversibly masks activity until an acidic environment is reached. Results: Significantly, the siPcsk9 (siRNA targeting to Pcsk9)-loaded nanoparticles (GLP) could silence 90% of the Pcsk9 mRNA in vitro. In vivo study showed that the improved accumulation of GLP in the liver increased LDLR level by 3.35-fold and decreased plasma LDL-C by 35%. Conclusion: GLP has shown a powerful effect on reducing LDL-C, thus providing a potential therapy for atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Nanopartículas , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Interferência de RNA , Doenças Cardiovasculares/metabolismo , Fígado/metabolismo , Colesterol , Receptores de LDL/genética , Receptores de LDL/metabolismo , Aterosclerose/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
2.
Acta Pharmacol Sin ; 44(10): 1962-1976, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37169852

RESUMO

Atherosclerosis is a major cause of death and disability in cardiovascular disease. Atherosclerosis associated with lipid accumulation and chronic inflammation leads to plaques formation in arterial walls and luminal stenosis in carotid arteries. Current approaches such as surgery or treatment with statins encounter big challenges in curing atherosclerosis plaque. The infiltration of proinflammatory M1 macrophages plays an essential role in the occurrence and development of atherosclerosis plaque. A recent study shows that TRIM24, an E3 ubiquitin ligase of a Trim family protein, acts as a valve to inhibit the polarization of anti-inflammatory M2 macrophages, and elimination of TRIM24 opens an avenue to achieve the M2 polarization. Proteolysis-targeting chimera (PROTAC) technology has emerged as a novel tool for the selective degradation of targeting proteins. But the low bioavailability and cell specificity of PROTAC reagents hinder their applications in treating atherosclerosis plaque. In this study we constructed a type of bioinspired PROTAC by coating the PROTAC degrader (dTRIM24)-loaded PLGA nanoparticles with M2 macrophage membrane (MELT) for atherosclerosis treatment. MELT was characterized by morphology, size, and stability. MELT displayed enhanced specificity to M1 macrophages as well as acidic-responsive release of dTRIM24. After intravenous administration, MELT showed significantly improved accumulation in atherosclerotic plaque of high fat and high cholesterol diet-fed atherosclerotic (ApoE-/-) mice through binding to M1 macrophages and inducing effective and precise TRIM24 degradation, thus resulting in the polarization of M2 macrophages, which led to great reduction of plaque formation. These results suggest that MELT can be considered a potential therapeutic agent for targeting atherosclerotic plaque and alleviating atherosclerosis progression, providing an effective strategy for targeted atherosclerosis therapy.


Assuntos
Aterosclerose , Placa Aterosclerótica , Quimera de Direcionamento de Proteólise , Animais , Camundongos , Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Inflamação/tratamento farmacológico , Macrófagos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Quimera de Direcionamento de Proteólise/farmacologia , Quimera de Direcionamento de Proteólise/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Nanopartículas/uso terapêutico
3.
Asian J Pharm Sci ; 17(5): 666-678, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36382298

RESUMO

The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox. However, its applications are still limited by its inefficient transduction. Herein, we present a novel gene vector, the zwitterionic polymer-inspired material with branched structure (ZEBRA) for efficient CRISPR/Cas9 delivery. Polo-like kinase 1 (PLK1) acts as a master regulator of mitosis and overexpresses in multiple tumor cells. The Cas9 and single guide sgRNA (sgRNA)-encoded plasmid was transduced to knockout Plk1 gene, which was expected to inhibit the expression of PLK1. Our studies demonstrated that ZEBRA enabled to transduce the CRISPR/Cas9 system with large size into the cells efficiently. The transduction with ZEBRA was cell line dependent, which showed ∼10-fold higher in CD44-positive cancer cell lines compared with CD44-negative ones. Furthermore, ZEBRA induced high-level expression of Cas9 proteins by the delivery of CRISPR/Cas9 and efficient gene editing of Plk1 gene, and inhibited the tumor cell growth significantly. This zwitterionic polymer-inspired material is an effective and targeted gene delivery vector and further studies are required to explore its potential in gene delivery applications.

4.
Front Bioeng Biotechnol ; 9: 762956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917596

RESUMO

Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye approved by the Food and Drug Administration (FDA), has been extensively used as a photoacoustic (PA) probe for PA imaging. However, its practical application is limited by poor photostability in water, rapid body clearance, and non-specificity. Herein, we fabricated a novel biomimetic nanoprobe by coating ICG-loaded mesoporous silica nanoparticles with the cancer cell membrane (namely, CMI) for PA imaging. This probe exhibited good dispersion, large loading efficiency, good biocompatibility, and homologous targeting ability to Hela cells in vitro. Furthermore, the in vivo and ex vivo PA imaging on Hela tumor-bearing nude mice demonstrated that CMI could accumulate in tumor tissue and display a superior PA imaging efficacy compared with free ICG. All these results demonstrated that CMI might be a promising contrast agent for PA imaging of cervical carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...