Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559810

RESUMO

Kapton film is a polymeric material widely used on low-Earth-orbit (LEO) spacecraft surfaces. In the LEO environment, atomic oxygen (AO) is spaceflight materials' most destructive environmental factor. The erosion mechanism of AO on Kapton films has long been an important issue, where the parameter dependence of the AO effect has received increasing attention. Studies of AO energy and cumulative flux have been extensively carried out, while the influence mechanism of the incidence angle and flux density is not fully understood. The AO incidence angle and flux density in space are diverse, which may cause different damage effects on aerospace materials. In this paper, the dependence of the incidence angle and flux density in the damaging effect of AO on Kapton films was investigated using ground-based AO test technology and the reactive molecular dynamics (ReaxFF MD) simulation technique. Firstly, the ground-based experiment obtained the mass loss data of Kapton films under the action of AO with a variable incidence angle and flux density. Then, the mass loss, temperature rise, product, and erosion yield of Kapton during AO impact with different incidence angles and dose rates were calculated using the ReaxFF MD method. The influences of the incidence angle and flux density on the damage mechanism of the AO effect were discussed by comparing the simulation and test results. The results show that the AO effect in the lower incidence angle range (0-60°) is independent of the incidence angle and depends only on the amount of impacted atomic oxygen. AO in the higher incidence angle range (60-90°) has a surface stripping effect, which causes more significant mass loss and a temperature rise while stripping raised macromolecules from rough surfaces, and the erosion effect increases with the increasing incidence angle and amount of impacted atomic oxygen. There is a critical value for the influence of flux density on the AO effect. Above this critical value, AO has a reduced erosive capacity due to a lower chance of participating in the reaction. The amount of each main product from the AO effect varies with the incidence angle and flux density. Nonetheless, the total content of the main products is essentially constant, around 70%. This work will contribute to our understanding of the incidence angle and flux density dependence of the AO effect and provide valuable information for the development of standards for ground simulation tests.

2.
Adv Mater ; 33(6): e2001105, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32893409

RESUMO

Nanocomposites, multiphase solid materials with at least one nanoscaled component, have been attracting ever-increasing attention because of their unique properties. Graphene is an ideal filler for high-performance multifunctional nanocomposites in light of its superior mechanical, electrical, thermal, and optical properties. However, the 2D nature of graphene usually gives rise to highly anisotropic features, which brings new opportunities to tailor nanocomposites by making full use of its excellent in-plane properties. Here, recent progress on graphene/polymer nanocomposites is summarized with emphasis on strengthening/toughening, electrical conduction, thermal transportation, and photothermal energy conversion. The influence of the graphene configuration, including layer number, defects, and lateral size, on its intrinsic properties and the properties of graphene/polymer nanocomposites is systematically analyzed. Meanwhile, the role of the interfacial interaction between graphene and polymer in affecting the properties of nanocomposites is also explored. The correlation between the graphene distribution in the matrix and the properties of the nanocomposite is discussed in detail. The key challenges and possible solutions are also addressed. This review may provide a constructive guidance for preparing high-performance graphene/polymer nanocomposite in the future.

3.
Angew Chem Int Ed Engl ; 58(23): 7636-7640, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30903667

RESUMO

Epoxy nanocomposites combining high toughness with advantageous functional properties are needed in many fields. However, fabricating high-performance homogeneous epoxy nanocomposites with traditional methods remains a great challenge. Nacre with outstanding fracture toughness presents an ideal blueprint for the development of future epoxy nanocomposites. Now, high-performance epoxy-graphene layered nanocomposites were demonstrated with ultrahigh toughness and temperature-sensing properties. These nanocomposites are composed of ca. 99 wt % organic epoxy, which is in contrast to the composition of natural nacre (ca. 96 wt % inorganic aragonite). These nanocomposites are named an inverse artificial nacre. The fracture toughness reaches about 4.2 times higher than that of pure epoxy. The electrical resistance is temperature-sensitive and stable under various humidity conditions. This strategy opens an avenue for fabricating high-performance epoxy nanocomposites with functional properties.

4.
RSC Adv ; 8(12): 6544-6550, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35540376

RESUMO

ß-Ga2O3, a semiconductor material, has attracted considerable attention given its potential applications in high-power devices, such as high-performance field-effect transistors. For decades, ß-Ga2O3 has been processed through chemical mechanical polishing (CMP). Nevertheless, the understanding of the effect of OH- on ß-Ga2O3 processed through CMP with an alkaline slurry remains limited. In this study, ß-Ga2O3 substrates were successively subjected to mechanical polishing (MP), CMP and etching. Then, to investigate the changes that occurred on the surfaces of the samples, samples were characterised through atomic force microscopy (AFM), three-dimensional laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). LSCM and SEM results showed that ß-Ga2O3 is highly vulnerable to brittle fracture during MP. AFM revealed that an ultrasmooth and nondamaged surface with a low R a of approximately 0.18 nm could be obtained through CMP. XPS results indicated that a metamorphic layer, which mainly contains soluble gallium salt (Ga(OH)4 -), formed on the ß-Ga2O3 surface through a chemical reaction. A dendritic pattern appeared on the surface of ß-Ga2O3 after chemical etching. This phenomenon indicated that the chemical reaction on the ß-Ga2O3 surface occurred in a nonuniform and selective manner. The results of this study will aid the optimization of slurry preparation and CMP.

5.
Adv Mater ; 29(45)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28833681

RESUMO

Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...