Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 387, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724946

RESUMO

BACKGROUND: Woody bamboos are the only diverse large perennial grasses in mesic-wet forests and are widely distributed in the understory and canopy. The functional trait variations and trade-offs in this taxon remain unclear due to woody bamboo syndromes (represented by lignified culm of composed internodes and nodes). Here, we examined the effects of heritable legacy and occurrence site climates on functional trait variations in leaf and culm across 77 woody bamboo species in a common garden. We explored the trade-offs among leaf functional traits, the connection between leaf nitrogen (N), phosphorus (P) concentrations and functional niche traits, and the correlation of functional traits between leaves and culms. RESULTS: The Bayesian mixed models reveal that the combined effects of heritable legacy (phylogenetic distances and other evolutionary processes) and occurrence site climates accounted for 55.10-90.89% of the total variation among species for each studied trait. The standardized major axis analysis identified trade-offs among leaf functional traits in woody bamboo consistent with the global leaf economics spectrum; however, compared to non-bamboo species, the woody bamboo exhibited lower leaf mass per area but higher N, P concentrations and assimilation, dark respiration rates. The canonical correlation analysis demonstrated a positive correlation (ρ = 0.57, P-value < 0.001) between leaf N, P concentrations and morphophysiology traits. The phylogenetic principal components and trait network analyses indicated that leaf and culm traits were clustered separately, with leaf assimilation and respiration rates associated with culm ground diameter. CONCLUSION: Our study confirms the applicability of the leaf economics spectrum and the biogeochemical niche in woody bamboo taxa, improves the understanding of woody bamboo leaf and culm functional trait variations and trade-offs, and broadens the taxonomic units considered in plant functional trait studies, which contributes to our comprehensive understanding of terrestrial forest ecosystems.


Assuntos
Nitrogênio , Folhas de Planta , Folhas de Planta/fisiologia , Folhas de Planta/genética , Nitrogênio/metabolismo , Sasa/genética , Sasa/fisiologia , Poaceae/genética , Poaceae/fisiologia , Fósforo/metabolismo , Filogenia , Teorema de Bayes
2.
Sci Total Environ ; : 173309, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782268

RESUMO

The grass family (Poaceae) dominates ~43 % of Earth's land area and contributes 33 % of terrestrial primary productivity that is critical to naturally regulating atmosphere CO2 concentration and global climate change. Currently grasses comprise ~11,780 species and ~50 % of them (~6000 species) utilize C4 photosynthetic pathway. Generally, grass species have smaller leaves under colder and drier environments, but it is unclear whether the primary drivers of leaf size differ between C3 and C4 grasses on a global scale. Here, we analyzed 33 environmental variables, such as latitude, elevation, mean annual temperature, mean annual precipitation, and solar radiation etc., through a comparatively comprehensive database of ~3.0 million occurrence records from 1380 C3 and 978 C4 grass species (2358 species in total). Results from this study confirm that C4 grasses have occupied habitats with lower latitudes and elevations, characterized by warmer, sunnier, drier and less fertile environmental conditions. Grass leaf size correlates positively with mean annual temperature and precipitation as expected. Our results also demonstrate that the mean temperature of the wettest quarter of the year is the primary control for C3 leaf size, whereas C4 leaf size is negatively correlated with the difference between summer and winter temperatures. For C4 grasses, phylogeny exerts a significant effect on leaf size but is less important than environmental factors. Our findings highlight the importance of evolutionarily contrasting variations in leaf size between C3 and C4 grasses for shaping their geographical distribution and habitat suitability at the global scale.

3.
J Environ Manage ; 348: 119274, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890399

RESUMO

Microbially driven nitrification and denitrification play important roles in regulating soil N availability and N2O emissions. However, how the composition of nitrifying and denitrifying prokaryotic communities respond to long-term N additions and regulate soil N2O emissions in subtropical forests remains unclear. Seven years of field experiment which included three N treatments (+0, +50, +150 kg N ha-1 yr-1; CK, LN, HN) was conducted in a subtropical forest. Soil available nutrients, N2O emissions, net N mineralization, denitrification potential and enzyme activities, and the composition and diversity of nitrifying and denitrifying communities were measured. Soil N2O emissions from the LN and HN treatments increased by 42.37% and 243.32%, respectively, as compared to the CK. Nitrogen addition significantly inhibited nitrification (N mineralization) and significantly increased denitrification potentials and enzymes. Nitrification and denitrification abundances (except nirK) were significantly lower in the HN, than CK treatment and were not significantly correlated with N2O emissions. Nitrogen addition significantly increased nirK abundance while maintaining the positive effects of denitrification and N2O emissions to N deposition, challenging the conventional wisdom that long-term N addition reduces N2O emissions by inhibiting microbial growth. Structural equation modeling showed that the composition, diversity, and abundance of nirS- and nirK-type denitrifying prokaryotic communities had direct effects on N2O emissions. Mechanistic investigations have revealed that denitrifier keystone taxa transitioned from N2O-reducing (complete denitrification) to N2O-producing (incomplete denitrification) with increasing N addition, increasing structural complexity and diversity of the denitrifier co-occurrence network. These results significantly advance current understanding of the relationship between denitrifying community composition and N2O emissions, and highlight the importance of incorporating denitrifying community dynamics and soil environmental factors together in models to accurately predict key ecosystem processes under global change.


Assuntos
Desnitrificação , Nitrogênio , Ecossistema , Óxido Nitroso/análise , Microbiologia do Solo , Nitrificação , Florestas , Solo/química
4.
Sci Total Environ ; 881: 163491, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37068669

RESUMO

Imbalanced nitrogen (N) and phosphorus (P) depositions are profoundly shifting terrestrial ecosystem biogeochemical processes. However, how P addition and its interaction with N addition influence the release of litter carbon (C), N, P, and especially metal nutrients in subtropical forests remains unclear. Herein, a two-year field litterbag experiment was conducted in a natural subtropical evergreen broadleaved forest of southwestern China using a factorial design with three levels of N addition (0, 10, and 20 g N m-2 y-1) and P addition (0, 5, 15 g P m-2 y-1). During two years of decomposition, N- and P-only addition treatments decreased the accumulated mass loss and release rates of litter C, N, P, K, Na, and Mn (p < 0.05); N and P coaddition treatments increased the accumulated mass loss and release rates of litter C, N, K, Na, Mn, and Cu (p < 0.05) and decreased the accumulated release rates of litter P and Mg (p < 0.05); the C/P and N/P ratios of the residual litter increased under the N-only addition treatments (p < 0.05) and decreased under the P-only addition and N and P coaddition treatments (p < 0.05). Overall, the results suggest that combined N and P supply can increase biological activities and thus accelerate the release of litter C, N, and most metal nutrients, as expected within the framework of ecological stoichiometry and growth rate hypothesis. Our study also highlights that the effect of N addition on litter C and nutrients release depends on P availability.


Assuntos
Ecossistema , Solo , Folhas de Planta , Florestas , Nitrogênio , Metais , Nutrientes , China , Carbono
5.
New Phytol ; 240(1): 105-113, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36960541

RESUMO

Plant flammability is an important driver of wildfires, and flammability itself is determined by several plant functional traits. While many plant traits are influenced by climatic conditions, the interaction between climatic conditions and plant flammability has rarely been investigated. Here, we explored the relationships among climatic conditions, shoot-level flammability components, and flammability-related functional traits for 186 plant species from fire-prone and nonfire-prone habitats. For species originating from nonfire-prone habitats, those from warmer areas tended to have lower shoot moisture content and larger leaves, and had higher shoot flammability with higher ignitibility, combustibility, and sustainability. Plants in wetter areas tended to have lower shoot flammability with lower combustibility and sustainability due to higher shoot moisture contents. In fire-prone habitats, shoot flammability was not significantly related to any climatic factor. Our study suggests that for species originating in nonfire-prone habitats, climatic conditions have influenced plant flammability by shifting flammability-related functional traits, including leaf size and shoot moisture content. Climate does not predict shoot flammability in species from fire-prone habitats; here, fire regimes may have an important role in shaping plant flammability. Understanding these nuances in the determinants of plant flammability is important in an increasingly fire-prone world.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Plantas , Folhas de Planta
6.
Glob Chang Biol ; 29(12): 3503-3515, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36934319

RESUMO

Microbial necromass is an important source and component of soil organic matter (SOM), especially within the most stable pools. Global change factors such as anthropogenic nitrogen (N), phosphorus (P), and potassium (K) inputs, climate warming, elevated atmospheric carbon dioxide (eCO2 ), and periodic precipitation reduction (drought) strongly affect soil microorganisms and consequently, influence microbial necromass formation. The impacts of these global change factors on microbial necromass are poorly understood despite their critical role in the cycling and sequestration of soil carbon (C) and nutrients. Here, we conducted a meta-analysis to reveal general patterns of the effects of nutrient addition, warming, eCO2 , and drought on amino sugars (biomarkers of microbial necromass) in soils under croplands, forests, and grasslands. Nitrogen addition combined with P and K increased the content of fungal (+21%), bacterial (+22%), and total amino sugars (+9%), consequently leading to increased SOM formation. Nitrogen addition alone increased solely bacterial necromass (+10%) because the decrease of N limitation stimulated bacterial more than fungal growth. Warming increased bacterial necromass, because bacteria have competitive advantages at high temperatures compared to fungi. Other global change factors (P and NP addition, eCO2 , and drought) had minor effects on microbial necromass because of: (i) compensation of the impacts by opposite processes, and (ii) the short duration of experiments compared to the slow microbial necromass turnover. Future studies should focus on: (i) the stronger response of bacterial necromass to N addition and warming compared to that of fungi, and (ii) the increased microbial necromass contribution to SOM accumulation and stability under NPK fertilization, and thereby for negative feedback to climate warming.


Assuntos
Microbiologia do Solo , Solo , Florestas , Mudança Climática , Nitrogênio/análise , Bactérias
7.
Glob Chang Biol ; 28(16): 4977-4988, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35617026

RESUMO

The carbon use efficiency (CUE) of soil microorganisms is a critical parameter for the first step of organic carbon (C) transformation by and incorporation into microbial biomass and shapes C cycling in terrestrial ecosystems. As C and nitrogen (N) cycles interact closely and N availability affects microbial metabolism, N addition to soil may shift the microbial CUE. We conducted a meta-analysis (100 data pairs) to generalize information about the microbial CUE response to N addition in soil based on the two most common CUE estimation approaches: (i) 13 C-labelled substrate addition (13 C-substrate) and (ii) 18 O-labelled water addition (18 O-H2 O). The mean microbial CUE in soils across all biomes and approaches was 0.37. The effects of N addition on CUE, however, were depended on the approach: CUE decreased by 12% if measured by the 13 C-substrate approach, while CUE increased by 11% if measured by the 18 O-H2 O approach. These differences in the microbial CUE response depending on the estimation approach are explained by the divergent reactions of microbial growth to N addition: N addition decreases the 13 C incorporation into microbial biomass (this parameter is in the numerator by CUE calculation based on the 13 C-substrate approach). In contrast, N addition slightly increases (although statistically insignificant) the microbial growth rate (in the numerator of the CUE calculation when assessed by the 18 O-H2 O approach), significantly raising the CUE. We explained these N addition effects based on CUE regulation mechanisms at the metabolic, cell, community, and ecosystem levels. Consequently, the differences in the microbial responses (microbial growth, respiration, C incorporation, community composition, and dormant or active states) between the 13 C-substrate and 18 O-H2 O approaches need to be considered. Thus, these two CUE estimation approaches should be compared to understand microbially mediated C and nutrient dynamics under increasing anthropogenic N input and other global change effects.


Assuntos
Carbono , Solo , Biomassa , Carbono/análise , Ecossistema , Nitrogênio/análise , Solo/química , Microbiologia do Solo
8.
Sci Total Environ ; 833: 155163, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35413342

RESUMO

Nitrogen (N) and phosphorus (P) control biogeochemical cycling in terrestrial ecosystems. However, N and P addition effects on litter decomposition, especially biological pathways in subtropical forests, remain unclear. Here, a two-year field litterbag experiment was employed in a subtropical forest in southwestern China to examine N and P addition effects on litter biological decomposition with nine treatments: low and high N- and P-only addition (LN, HN, LP, and HP), NP coaddition (LNLP, LNHP, HNLP, and HNHP), and a control (CK). The results showed that the decomposition coefficient (k) was higher in NP coaddition treatments (P < 0.05), and lower in N- and P-only addition treatments than in CK (P < 0.05). The highest k was observed with LNLP (P < 0.05). The N- and P-only addition treatments decreased the losses of litter mass, lignin, cellulose, and condensed tannins, litter microbial biomass carbon (MBC), litter cellulase, and soil pH (P < 0.05). The NP coaddition treatments increased the losses of litter mass, lignin, and cellulose, MBC concentration, litter invertase, urease, cellulase, and catalase activities, soil arthropod diversity (S) in litterbags, and soil pH (P < 0.05). Litter acid phosphatase activity and N:P ratio were lower in N-only addition treatments but higher in P-only addition and NP coaddition treatments than in CK (P < 0.05). Structural equation model showed that litter MBC, S, cellulase, acid phosphatase, and polyphenol oxidase contributed to the loss of litter mass (P < 0.05). The litter N:P ratio was negatively logarithmically correlated with mass loss (P < 0.01). In conclusion, the negative effect of N addition on litter decomposition was reversed when P was added by increasing decomposed litter soil arthropod diversity, MBC concentration, and invertase and cellulase activities. Finally, the results highlighted the important role of the N:P ratio in litter decomposition.


Assuntos
Celulases , Nitrogênio , Fosfatase Ácida/metabolismo , Carbono/análise , Celulases/análise , Celulases/metabolismo , China , Ecossistema , Florestas , Lignina/metabolismo , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/química , Solo/química , beta-Frutofuranosidase/análise , beta-Frutofuranosidase/metabolismo
9.
PLoS One ; 13(9): e0204661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261036

RESUMO

Soil respiration is the second largest terrestrial carbon (C) flux; the responses of soil respiration to nitrogen (N) deposition have far-reaching influences on the global C cycle. N deposition has been documented to significantly affect soil respiration, but the results are conflicting. The response of soil respiration to N deposition gradients remains unclear, especially in ecosystems receiving increasing ambient N depositions. A field experiment was conducted in a natural evergreen broadleaf forest in western China from November 2013 to November 2015 to understand the effects of increasing N deposition on soil respiration. Four levels of N deposition were investigated: control (Ctr, without N added), low N (L, 50 kg N ha-1·a-1), medium N (M, 150 kg N ha-1·a-1), and high N (H, 300 kg N ha-1·a-1). The results show that (1) the mean soil respiration rates in the L, M, and H treatments were 9.13%, 15.8% (P < 0.05) and 22.57% (P < 0.05) lower than that in the Ctr treatment (1.56 ± 0.13 µmol·m-2·s-1), respectively; (2) soil respiration rates showed significant positive exponential and linear relationships with soil temperature and moisture (P < 0.01), respectively. Soil temperature is more important than soil moisture in controlling the soil respiration rate; (3) the Ctr, L, M, and H treatments yielded Q10 values of 2.98, 2.78, 2.65, and 2.63, respectively. N deposition decreased the temperature sensitivity of soil respiration; (4) simulated N deposition also significantly decreased the microbial biomass C and N, fine root biomass, pH and extractable dissolved organic C (P < 0.05). Overall, the results suggest that soil respiration declines in response to N deposition. The decrease in soil respiration caused by simulated N deposition may occur through decreasing the microbial biomass C and N, fine root biomass, pH and extractable dissolved organic C. Ongoing N deposition may have significant impacts on C cycles and increase C sequestration with the increase in global temperature in evergreen broadleaf forests.


Assuntos
Florestas , Nitrogênio/análise , Solo/química , Biomassa , Ciclo do Carbono , Dióxido de Carbono , Ecossistema , Modelos Biológicos , Fixação de Nitrogênio , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Estações do Ano , Microbiologia do Solo , Temperatura , Árvores/química , Árvores/metabolismo , Água/análise
10.
Ying Yong Sheng Tai Xue Bao ; 19(8): 1644-50, 2008 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-18975736

RESUMO

By using forest inventory data in combination with plot measurement, the characteristics of carbon density, stock, and partitioning in artificial forest ecosystem in Sichuan Province of China were studied. The results showed that the carbon density in this forest ecosystem was averagely 161.16 Mg C x hm(-2), being ranked in the order of soil layer (141.64 Mg C x hm(-2)) >tree layer (17.95 Mg C x hm(-2)) >litter layer (1.06 Mg C x hm(-2)) >shrub layer (0.52 Mg C x hm(-2)), and the total carbon stock was 573.57 Tg C, with 63.88 Tg C, 1.836 Tg C, 3.764 Tg C, and 504.09 Tg C, accounting for 11.14%, 0.32%, 0.66%, and 87.88% of the total in tree layer, shrub layer, litter layer, and soil layer, respectively. The carbon density and stock in different artificial forest ecosystems varied from 75.50 Mg C x hm(-2) to 251.74 Mg C x hm(-2) and from 1.21 Tg C to 99.44 Tg C, with the highest and lowest values observed in soil layer and shrub layer, respectively. Comparing with other regions in China, Sichuan Province had a lower carbon density in the tree layer of artificial forest ecosystem, due to the higher proportion of young and middle age forest stands, which implied that a proper management of artificial forest could increase the carbon sequestration in forest ecosystem of Sichuan. To monitor the carbon stock in artificial forest ecosystem at ecosystem level could be helpful to the improvement of the precision of forest carbon sequestration evaluation.


Assuntos
Carbono/análise , Ecossistema , Solo/análise , Árvores/crescimento & desenvolvimento , China , Árvores/fisiologia
11.
Ying Yong Sheng Tai Xue Bao ; 18(12): 2687-92, 2007 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-18333440

RESUMO

Based on the modeling of forest biomass and timber volume and the 1974-2004 forest inventory data, the spatiotemporal variation of carbon density and storage in forest vegetation in Sichuan Province was studied. The results showed that the forest carbon storage was increased from 300.02 Tg in 1974 to 469.96 Tg in 2004, with an annual increment of 1.51%, which suggested that the forests in Sichuan Province were the sink of CO2. However, owing to the increase of plantations, the average carbon density of forest vegetation decreased from 49.91 Mg x hm(-2) to 37.39 Mg x Shm(-2), implying that Sichuan forests had a great potential of carbon sequestration through artificial forest management. The carbon storage in Sichuan forests had a spatial heterogeneity, and the ranked order was northwest alpine gorge area > southwest mountainous area > low-mountain area > hilly area > western plain. Forest carbon density increased from southwest area to northwest area, with the order of hilly area < northern plain < southwest mountain area < low-mountain area < northwest alpine gorge area. It was suggested that forest management according to different sub-regions would improve the potential of carbon sequestration in Sichuan forests.


Assuntos
Carbono/análise , Ecossistema , Solo/análise , Árvores/crescimento & desenvolvimento , China , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...