Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Biomed Pharmacother ; 175: 116788, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772153

RESUMO

AIMS: Penicilazaphilone C (PAC) is hypothesized to potentially serve as a therapeutic treatment for allergic airway inflammation by inhibiting the NLRP3 inflammasome and reducing oxidative stress. METHODS: An allergic asthma model was induced in female BALB/c mice of the OVA, OVA+PAC, OVA+PAC+LPS, and OVA+Dex groups by sensitizing and subsequently challenging them with OVA. The OVA+PAC and Normal+PAC groups were treated with PAC, while the OVA+PAC+LPS group also received LPS. The OVA+Dex group was given dexamethasone (Dex). Samples of serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for histological and cytological analysis. RESULTS: Allergic mice treated with PAC or Dex showed inhibited inflammation and mucus production in the lungs. There was a decrease in the number of inflammatory cells in the BALF, lower levels of inflammatory cytokines in the serum and BALF, and a reduction in the protein expression of NLRP3, ASC, cleaved caspase-1, IL-1ß, activated gasdermin D, MPO, Ly6G, and ICAM-1. Additionally, oxidative stress was reduced, as shown by a decrease in MDA and DCF, but an increase in SOD and GSH. Treatment with PAC also resulted in a decrease in pulmonary memory CD4+ T cells and an increase in regulatory T cells. However, the positive effects seen in the PAC-treated mice were reversed when the NLRP3 inflammasome was activated by LPS, almost returning to the levels of the Sham-treated mice. SIGNIFICANCE: PAC acts in a similar way to anti-allergic inflammation as Dex, suggesting it may be a viable therapeutic option for managing allergic asthma inflammation.

2.
PLoS One ; 19(3): e0299571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466744

RESUMO

Phosphatases can dephosphorylate phosphorylated kinases, leading to their inactivation, and ferroptosis is a type of cell death. Therefore, our aim is to identify phosphatases associated with ferroptosis by analyzing the differentially expressed genes (DEGs) of the Luminal A Breast Cancer (LumABC) cohort from the Cancer Genome Atlas (TCGA). An analysis of 260 phosphatase genes from the GeneCard database revealed that out of the 28 DEGs with high expression, only the expression of pyruvate dehydrogenase phosphatase 2 (PDP2) had a significant correlation with patient survival. In addition, an analysis of DEGs using gene ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis revealed a significant variation in the expression of ferroptosis-related genes. To further investigate this, we analyzed 34 ferroptosis-related genes from the TCGA-LumABC cohort. The expression of long-chain acyl-CoA synthetase 4 (ACSL4) was found to have the highest correlation with the expression of PDP2, and its expression was also inversely proportional to the survival rate of patients. Western blot experiments using the MCF-7 cell line showed that the phosphorylation level of ACSL4 was significantly lower in cells transfected with the HA-PDP2 plasmid, and ferroptosis was correspondingly reduced (p < 0.001), as indicated by data from flow cytometry detection of membrane-permeability cell death stained with 7-aminoactinomycin, lipid peroxidation, and Fe2+. Immunoprecipitation experiments further revealed that the phosphorylation level of ACSL4 was only significantly reduced in cells where PDP2 and ACSL4 co-precipitated. These findings suggest that PDP2 may act as a phosphatase to dephosphorylate and inhibit the activity of ACSL4, which had been phosphorylated and activated in LumABC cells. Further experiments are needed to confirm the molecular mechanism of PDP2 inhibiting ferroptosis.


Assuntos
Neoplasias da Mama , Ferroptose , Feminino , Humanos , Neoplasias da Mama/genética , Coenzima A Ligases/genética , Ferroptose/genética , Peroxidação de Lipídeos , Monoéster Fosfórico Hidrolases , Fosforilação , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo
3.
Sci Rep ; 13(1): 21916, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38081931

RESUMO

Gankyrin is found in high levels in triple-negative breast cancer (TNBC) and has been established to form a complex with the E3 ubiquitin ligase MDM2 and p53, resulting in the degradation of p53 in hepatocarcinoma cells. Therefore, this study sought to determine whether gankyrin could inhibit ferroptosis through this mechanism in TNBC cells. The expression of gankyrin was investigated in relation to the prognosis of TNBC using bioinformatics. Co-immunoprecipitation and GST pull-down assays were then conducted to determine the presence of a gankyrin and MDM2 complex. RT-qPCR and immunoblotting were used to examine molecules related to ferroptosis, such as gankyrin, p53, MDM2, SLC7A11, and GPX4. Additionally, cell death was evaluated using flow cytometry detection of 7-AAD and a lactate dehydrogenase release assay, as well as lipid peroxide C11-BODIPY. Results showed that the expression of gankyrin is significantly higher in TNBC tissues and cell lines, and is associated with a poor prognosis for patients. Subsequent studies revealed that inhibiting gankyrin activity triggered ferroptosis in TNBC cells. Additionally, silencing gankyrin caused an increase in the expression of the p53 protein, without altering its mRNA expression. Co-immunoprecipitation and GST pull-down experiments indicated that gankyrin and MDM2 form a complex. In mouse embryonic fibroblasts lacking both MDM2 and p53, this gankyrin/MDM2 complex was observed to ubiquitinate p53, thus raising the expression of molecules inhibited by ferroptosis, such as SLC7A11 and GPX4. Furthermore, silencing gankyrin in TNBC cells disrupted the formation of the gankyrin/MDM2 complex, hindered the degradation of p53, increased SLC7A11 expression, impeded cysteine uptake, and decreased GPX4 production. Our findings suggest that TNBC cells are able to prevent cell ferroptosis through the gankyrin/p53/SLC7A11/GPX4 signaling pathway, indicating that gankyrin may be a useful biomarker for predicting TNBC prognosis or a potential therapeutic target.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fibroblastos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética
4.
MAbs ; 15(1): 2273449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930310

RESUMO

Bispecific antibodies represent an increasingly large fraction of biologics in therapeutic development due to their expanded scope in functional capabilities. Asymmetric monovalent bispecific IgGs (bsIgGs) have the additional advantage of maintaining a native antibody-like structure, which can provide favorable pharmacology and pharmacokinetic profiles. The production of correctly assembled asymmetric monovalent bsIgGs, however, is a complex engineering endeavor due to the propensity for non-cognate heavy and light chains to mis-pair. Previously, we introduced the DuetMab platform as a general solution for the production of bsIgGs, which utilizes an engineered interchain disulfide bond in one of the CH1-CL domains to promote orthogonal chain pairing between heavy and light chains. While highly effective in promoting cognate heavy and light chain pairing, residual chain mispairing could be detected for specific combinations of Fv pairs. Here, we present enhancements to the DuetMab design that improve chain pairing and production through the introduction of novel electrostatic steering mutations at the CH1-CL interface with lambda light chains (CH1-Cλ). These mutations work together with previously established charge-pair mutations at the CH1-CL interface with kappa light chains (CH1-Cκ) and Fab disulfide engineering to promote cognate heavy and light chain pairing and enable the reliable production of bsIgGs. Importantly, these enhanced DuetMabs do not require engineering of the variable domains and are robust when applied to a panel of bsIgGs with diverse Fv sequences. We present a comprehensive biochemical, biophysical, and functional characterization of the resulting DuetMabs to demonstrate compatibility with industrial production benchmarks. Overall, this enhanced DuetMab platform substantially streamlines process development of these disruptive biotherapeutics.


Assuntos
Anticorpos Biespecíficos , Anticorpos Biespecíficos/genética , Eletricidade Estática , Dissulfetos , Mutação , Imunoglobulina G/genética
5.
Front Behav Neurosci ; 17: 1008086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025109

RESUMO

Mindfulness refers to a mental state of awareness of internal experience without judgment. Studies have suggested that each mindfulness practice may involve a unique mental state, but the underlying neurophysiological mechanisms remain unknown. Here we examined how distinct mindfulness practices after mindfulness-based intervention alter brain functionality. Specifically, we investigated the functional alterations of the salience network (SN) using functional magnetic resonance imaging (fMRI) among the two interoceptive mindfulness practices-breathing and body scan-associated with interoceptive awareness in fixed attention and shifted attention, respectively. Long-distance functional connectivity (FC) and regional homogeneity (ReHo) approaches were applied to measure distant and local neural information processing across various mental states. We hypothesized that mindful breathing and body scan would yield a unique information processing pattern in terms of long-range and local functional connectivity (FC). A total of 18 meditation-naïve participants were enrolled in an 8-week mindfulness-based stress reduction (MBSR) program alongside a waitlist control group (n = 14), with both groups undergoing multiple fMRI sessions during breathing, body scan and resting state for comparison. We demonstrated that two mindfulness practices affect both the long-distance FC SN and the local ReHo, only apparent after the MBSR program. Three functional distinctions between the mindfulness practices and the resting state are noted: (1) distant SN connectivity to occipital regions increased during the breathing practice (fixed attention), whereas the SN increased connection with the frontal/central gyri during the body scan (shifting attention); (2) local ReHo increased only in the parietal lobe during the body scan (shifting attention); (3) distant and local connections turned into a positive correlation only during the mindfulness practices after the MBSR training, indicating a global enhancement of the SN information processing during mindfulness practices. Though with limited sample size, the functional specificity of mindfulness practices offers a potential research direction on neuroimaging of mindfulness, awaiting further studies for verification.

6.
J Neurosci Res ; 101(6): 901-915, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36717762

RESUMO

Practicing mindfulness, focusing attention on the internal and external experiences occurring in the present moment with open and nonjudgement stance, can lead to the development of emotional regulation skills. Yet, the effective connectivity of brain regions during mindfulness has been largely unexplored. Studies have shown that mindfulness practice promotes functional connectivity in practitioners, potentially due to improved emotional regulation abilities and increased connectivity in the lateral prefrontal areas. To examine the changes in effective connectivity due to mindfulness training, we analyzed electroencephalogram (EEG) signals taken before and after mindfulness training, focusing on training-related effective connectivity changes in the frontal area. The mindfulness training group participated in an 8-week mindfulness-based stress reduction (MBSR) program. The control group did not take part. Regardless of the specific mindfulness practice used, low-gamma band effective connectivity increased globally after the mindfulness training. High-beta band effective connectivity increased globally only during Breathing. Moreover, relatively higher outgoing effective connectivity strength was seen during Resting and Breathing and Body-scan. By analyzing the changes in outgoing and incoming connectivity edges, both F7 and F8 exhibited strong parietal connectivity during Resting and Breathing. Multiple regression analysis revealed that the changes in effective connectivity of the right lateral prefrontal area predicted mindfulness and emotional regulation abilities. These results partially support the theory that the lateral prefrontal areas have top-down modulatory control, as these areas have high outflow effective connectivity, implying that mindfulness training cultivates better emotional regulation.


Assuntos
Regulação Emocional , Atenção Plena , Atenção Plena/métodos , Encéfalo/fisiologia , Eletroencefalografia , Análise Multivariada
7.
Pharmacol Res ; 187: 106613, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535569

RESUMO

Increasing studies have suggested that some cardiac glycosides, such as conventional digoxin (DIG) and digitoxin, can induce immunogenic cell death (ICD) in various tumors. We previously found that 3'-epi-12ß-hydroxyfroside (HyFS), a novel cardenolide compound isolated by our group, could induce cytoprotective autophagy through inactivation of the Akt/mTOR pathway. However, whether HyFS can induce ICD remains unknown. In this study, we extend our work to further investigate whether HyFS could induce both autophagy and ICD, and we investigated the relationship between autophagy and ICD in three TNBC cell lines. Unexpectedly, compared to DIG, we found that HyFS could induce complete autophagy flux but not ICD in three human triple-negative breast cancer (TNBC) cell lines and one murine TNBC model. Inhibition of HyFS-induced autophagy resulted in the production of ICD in TNBC MDA-MB-231, MDA-MB-436, and HCC38 cells. A further mechanism study showed that formation of RIPK1/RIPK3 necrosomes was necessary for ICD induction in DIG-treated TNBC cells, while HyFS treatment led to receptor-interacting serine-threonine kinase (RIPK)1/3 necrosome degradation via an autophagy process. Additionally, inhibition of HyFS-induced autophagy by the autophagy inhibitor chloroquine resulted in the reoccurrence of ICD and reversion of the tumor microenvironment, leading to more significant antitumor effects in immunocompetent mice than in immunodeficient mice. These findings indicate that HyFS-mediated autophagic degradation of RIPK1/RIPK3 necrosomes leads to inactivation of ICD in TNBC cells. Moreover, combined treatment with HyFS and an autophagy inhibitor may enhance the antitumor activities, suggesting an alternative therapeutic for TNBC treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Apoptose , Autofagia , Linhagem Celular Tumoral , Morte Celular Imunogênica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
8.
Phytother Res ; 36(7): 2940-2951, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35537702

RESUMO

Angiogenesis plays a pivotal role in the recovery of neurological function after ischemia stroke. Herein, we investigated the effect of trilobatin (TLB) on angiogenesis after cerebral ischemia-reperfusion injury (CIRI). The effect of TLB on angiogenesis after CIRI were investigated in mouse brain microvascular endothelium bEnd.3 cells and middle cerebral artery occlusion (MCAO)-induced CIRI rat model. The cell proliferation and angiogenesis were observed using immunofluorescence staining. The cell cycle, expressions of cell cycle-related proteins and SIRT 1-7 were determined by flow cytometry and western blot, respectively. The binding affinity of TLB with SIRT7 was predicted by molecular docking. The results showed that TLB concentration-dependently promoted bEnd.3 cell proportion in the S-phase. TLB significantly increased the protein expressions of SIRT6, SIRT7, and VEGFA, but not affected SIRT1-SIRT5 protein expressions. Moreover, TLB not only dramatically alleviated neurological impairment after CIRI, but also enhanced post-stroke neovascularization and newly formed functional vessels in cerebral ischemic penumbra. Furthermore, TLB up-regulated the protein expressions of CDK4, cyclin D1, VEGFA and its receptor VEGFR-2. Intriguingly, TLB not only directly bound to SIRT7, but also increased SIRT7 expression at day 28. Our findings reveal that TLB promotes cerebral microvascular endothelial cells proliferation, and facilitates angiogenesis after CIRI via mediating SIRT7/VEGFA signaling pathway in rats. Therefore, TLB might be a novel restorative agent to rescue ischemia stroke.


Assuntos
Flavonoides , Polifenóis , Traumatismo por Reperfusão , Sirtuínas , Animais , Células Endoteliais/metabolismo , Flavonoides/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Neovascularização Patológica , Polifenóis/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais , Sirtuínas/metabolismo , Fator A de Crescimento do Endotélio Vascular
9.
J Exp Bot ; 73(16): 5596-5611, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35595516

RESUMO

In most algae, NO3- assimilation is tightly controlled and is often inhibited by the presence of NH4+. In the marine, non-colonial, non-diazotrophic cyanobacterium Synechococcus UTEX 2380, NO3- assimilation is sensitive to NH4+ only when N does not limit growth. We sequenced the genome of Synechococcus UTEX 2380, studied the genetic organization of the nitrate assimilation related (NAR) genes, and investigated expression and kinetics of the main NAR enzymes, under N or light limitation. We found that Synechococcus UTEX 2380 is a ß-cyanobacterium with a full complement of N uptake and assimilation genes and NAR regulatory elements. The nitrate reductase of our strain showed biphasic kinetics, previously observed only in freshwater or soil diazotrophic Synechococcus strains. Nitrite reductase and glutamine synthetase showed little response to our growth treatments, and their activity was usually much higher than that of nitrate reductase. NH4+ insensitivity of NAR genes may be associated with the stimulation of the binding of the regulator NtcA to NAR gene promoters by the high 2-oxoglutarate concentrations produced under N limitation. NH4+ sensitivity in energy-limited cells fits with the fact that, under these conditions, the use of NH4+ rather than NO3- decreases N-assimilation cost, whereas it would exacerbate N shortage under N limitation.


Assuntos
Synechococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
10.
Cell Death Discov ; 8(1): 151, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35368023

RESUMO

Endometriosis (EMs) is a benign gynecological disorder showing some tumor-like migratory and invasive phenotypes. This study intended to investigate the role of microRNA-30c (miR-30c) in EMs, which is involved with B-cell lymphoma 9 (BCL9), an activator of the Wnt/ß-catenin signaling pathway. EMs specimens were clinically collected for determination of miR-30c and BCL9 expression. Exosomes were isolated from endometrial epithelial cells (EECs), and the uptake of exosomes by ectopic EECs (ecto-EECs) was characterized using fluorescence staining and confocal microscopy. The binding of miR-30c to BCL9 was validated by dual-luciferase reporter assay. Artificial modulation (up- and down-regulation) of the miR-30c/BCL9/Wnt/CD44 regulatory cascade was performed to evaluate its effect on ecto-EEC invasion and migration, as detected by Transwell and wound healing assays. A mouse model of EMs was further established for in vivo substantiation. Reduced miR-30c expression and elevated BCL9 expression was revealed in EMs ectopic tissues and ecto-EECs. Normal EECs-derived exosomes delivered miR-30c to ecto-EECs to suppress their invasive and migratory potentials. Then, miR-30c was observed to inhibit biological behaviors of ecto-EECs by targeting BCL9, and the miR-30c-induced inhibitory effect was reversed by BCL9 overexpression. Further, miR-30c diminished the invasion and migration of ecto-EECs by blocking the BCL9/Wnt/CD44 axis. Moreover, miR-30c-loaded exosomes attenuated the metastasis of ecto-EEC ectopic nodules. miR-30c delivered by EECs-derived exosomes repressed BCL9 expression to block the Wnt/ß-catenin signaling pathway, thus attenuating the tumor-like behaviors of ecto-EECs in EMs.

11.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35256516

RESUMO

BACKGROUND: Several agents for oncolytic immunotherapy have been approved for clinical use, but monotherapy is modest for most oncolytic agents. The combination of several therapeutic strategies through recombinant and nanotechnology to engineer multifunctional oncolytic viruses for oncolytic immunotherapy is a promising strategy. METHODS: An endothelium-targeting iRGD-liposome encapsulating a recombinant Newcastle disease virus (NDV), which expresses the dendritic cell (DC) chemokine MIP-3α (iNDV3α-LP), and three control liposomes were constructed. MIP-3α, HMGB1, IgG, and ATP were detected by western blotting or ELISA. The chemotaxis of DCs was examined by Transwell chambers. The phenotypes of the immune cells were analyzed by flow cytometry. The antitumor efficiency was investigated in B16 and 4T1 tumor-bearing mice. Immunofluorescence and immunohistochemistry were used to observe the localization of liposomes, molecular expression and angiogenesis. Synergistic index was calculated using the data of tumor volume, tumor angiogenesis and tumor-infiltrating lymphocytes. RESULTS: Compared with NDV-LP, treatment with iNDV3α-LP and NDV3α-LP induced stronger virus replication and cell lysis in B16 and 4T1 tumor cells and human umbilical vein endothelial cells (HUVECs) with the best response observed following iNDV3α-LP treatment. B16 and 4T1 cells treated with iNDV3α-LP produced more damage-associated molecular pattern molecules, including secreted HMGB1, ATP, and calreticulin. Moreover, iNDV3α-LP specifically bound to αvß3-expressing 4T1 cells and HUVECs and to tumor neovasculature. Tumor growth was significantly suppressed, and survival was longer in iNDV3α-LP-treated B16-bearing and 4T1-bearing mice. A mechanism study showed that iNDV3α-LP treatment initiated the strongest tumor-specific cellular and humoral immune response. Moreover, iNDV3α-LP treatment could significantly suppress tumor angiogenesis and reverse the tumor immune suppressive microenvironment in both B16-bearing and 4T1-bearing mice. CONCLUSIONS: In this study, iNDV3α-LP had several functions, such as tumor and vessel lysis, MIP-3α immunotherapy, and binding to αvß3-expressing tumor and its neovasculature. iNDV3α-LP treatment significantly suppressed tumor angiogenesis and reversed the tumor immunosuppressive microenvironment. These findings offer a strong rationale for further clinical investigation into a combination strategy for oncolytic immunotherapy, such as the formulation iNDV3α-LP in this study.


Assuntos
Proteína HMGB1 , Neoplasias , Terapia Viral Oncolítica , Trifosfato de Adenosina/metabolismo , Animais , Células Endoteliais , Endotélio , Proteína HMGB1/metabolismo , Humanos , Fatores Imunológicos , Imunoterapia , Lipossomos/metabolismo , Camundongos , Neoplasias/terapia , Vírus da Doença de Newcastle , Microambiente Tumoral
12.
Front Psychol ; 12: 748584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777144

RESUMO

Objectives: Mindfulness-based stress reduction has been proven to improve mental health and quality of life. This study examined how mindfulness training and various types of mindfulness practices altered brain activity. Methods: Specifically, the spectral powers of scalp electroencephalography of the mindfulness-based stress reduction (MBSR) group (n=17) who underwent an 8-week MBSR training-including mindful breathing and body-scan-were evaluated and compared with those of the waitlist controls (n=14). Results: Empirical results indicated that the post-intervention effect of MBSR significantly elevated the resting-state beta powers and reduced resting-state delta powers in both practices; such changes were not observed in the waitlist control. Compared with mindful breathing, body-scanning resulted in an overall decline in electroencephalograms (EEG) spectral powers at both delta and low-gamma bands among trained participants. Conclusion: Together with our preliminary data of expert mediators, the aforementioned spectral changes were salient after intervention, but mitigated along with expertise. Additionally, after receiving training, the MBSR group's mindfulness and emotion regulation levels improved significantly, which were correlated with the EEG spectral changes in the theta, alpha, and low-beta bands. The results supported that MBSR might function as a unique internal processing tool that involves increased vigilant capability and induces alterations similar to other cognitive training.

13.
Mol Immunol ; 140: 59-69, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655920

RESUMO

The local immune microenvironment of the uterus plays an important role in a successful pregnancy. IP-10 (CXCL10) has been extensively studied in many immune-related diseases. However, the immune role of IP-10 in early pregnancy has not been fully recognized. This study mainly investigated the role of pro-inflammatory chemokine IP-10 in pregnancy. The levels of IP-10 and its receptor chemokine receptor 3 (CXCR3) were lower in the decidual tissues of an abortion-prone mice than in normal pregnant mice. Meantime, the expression of IP-10 and CXCR3 was higher in the decidual tissues of early pregnant women than in the endometrial tissues of non-pregnant women. IP-10 promoted the production of interleukin 17 (IL-17) and interferon gamma (IFN-γ), and also promoted the migration and differentiation of uterine decidual T cells to type 1 T helper (Th1) cells and Th17 cells. The abortion rate of early pregnant mice increased but the number of CD49b+, CD11b+, and CD3ε+ cells in the decidual tissues decreased upon treatment with anti-IP-10 antibody. Moreover, anti IP-10 antibody decreased the expression of RANTES but increased the expression of anti-inflammatory cytokines IL-6 and IL-10. A successful pregnancy requires the participation of IP-10. IP-10 participates in formation of the pro-inflammatory immune microenvironment during early pregnancy by regulating the distribution of immune cells and promoting the production of pro-inflammatory cytokines.


Assuntos
Quimiocina CXCL10/metabolismo , Receptores CXCR3/metabolismo , Animais , Antígeno CD11b/metabolismo , Decídua/citologia , Feminino , Integrina alfa2/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Modelos Animais , Especificidade de Órgãos , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Biomaterials ; 278: 121141, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34564035

RESUMO

Due to its size, shape, and inherent expression of pathogen-associated molecular patterns and invasion-assistant adhesion proteins, Burkholderia pseudomallei can easily attach to, and then be internalized by, dendritic cells (DCs), leading to more efficient antigen cross-presentation if modified as carrier. Herein, we engineered Burkholderia pseudomallei as a porous/hollow carrier (SB) for loading tumor lysates (L) and adjuvant CpG (C) to be used as a tumor vaccine (SB-LC). We found that the adhesion proteins of Burkholderia pseudomallei promote internalization of the SB-LC vaccine by DCs, and result in enhanced DC maturation and antigen cross-presentation. SB-LC induces robust cellular and humoral antitumor responses that synergistically inhibit tumor growth with minimal adverse side effects in several tumor models. Moreover, SB-LC vaccination reverses the immunosuppressive tumor microenvironment, apparently as a result of CD8+-induced tumor ferroptosis. Thus, SB-LC is a potential model tumor vaccine for translating into a clinically viable treatment option.


Assuntos
Burkholderia pseudomallei , Vacinas Anticâncer , Neoplasias , Células Dendríticas , Humanos , Porosidade , Microambiente Tumoral
15.
J Control Release ; 332: 245-259, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33647430

RESUMO

Virus is a nanosized pathogen and mainly composed of viral protein and nucleic acids. Under the pressure of long-term selection, mammals have gradually evolved effective immune mechanisms to defend themselves against viruses. In addition to recognizing viral proteins, immune system can also respond to viral sequence-specific nucleic acids, including CpG ODN, single- and double- strand RNA, and thereby enhancing the ability to remove infected viruses. Inspired by these immune mechanisms, we have attempted to develop a tracing virus-mimicking nanovaccine for tumor immunotherapy. This nanovaccine mainly consists of nucleic acids (CpG ODN), proteins (including tumor-associated antigen, and neutravidin (nAvidin) as skeleton materials for constructing nanovaccine and carriers for loading tumor-associated antigen and CpG ODN), and the dye molecules for assembling nAvidin to form nanoparticles comparable in size to viruses and tracing the vaccine in vitro and in vivo. The as-prepared nanovaccine efficiently induces the maturation of dendritic cell, the enhancement of antigen cross-presentation ability, and amplification of cytokine production in vitro. Furthermore, in vivo analysis clearly shows that it targets lymph nodes, successfully presents antigens to generate tumor-antigen-specific CD8+ T cells and induces a Th1-biased immune response. Most notably, this virus-mimicking nanovaccine significantly inhibits the growth of antigen-expressed tumor and prolongs the survival time of the antigen-expressed tumor bearing mice.


Assuntos
Vacinas Anticâncer , Nanopartículas , Vírus , Animais , Avidina , Biotina , Linfócitos T CD8-Positivos , Células Dendríticas , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL
16.
Hum Brain Mapp ; 42(2): 510-520, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068043

RESUMO

Bereavement, the experience of losing a loved one, is one of the most catastrophic but inevitable events in life. It causes grief and intense depression-like sadness. Recent studies have revealed the effectiveness and proficiency of mindfulness-based cognitive therapy (MBCT) in emotional regulation among bereavement populations. MBCT improves the well-being of the bereaved by enhancing cognitive performances. Regarding the neural correlates of bereavement grief, previous studies focused on the alleviation of emotion-cognition interferences at specific brain regions. Here, we hypothesized that the bereavement grief fundamentally triggers global alterations in the resting-state brain networks and part of the internetwork connectivity could be reformed after MBCT intervention. We recruited 19 bereaved individuals who participated the 8-week MBCT program. We evaluated (a) the large-scale changes in brain connectivity affected by the MBCT program; as well as (b) the association between connectivity changes and self-rated questionnaire. First, after MBCT, the bereaved individuals showed the reduction of the internetwork connectivity in the salience, default-mode and fronto-parietal networks in the resting state but not under emotional arousal, implying the alleviated attention to spontaneous mind wandering after MBCT. Second, the alterations of functional connectivity between subcortical (e.g., caudate) and cortical networks (e.g., cingulo-opercular/sensorimotor) were associated with the changes of the mindfulness scale, the anxiety and the emotion regulation ability. In summary, MBCT could enhance spontaneous emotion regulation among the bereaved individuals through the internetwork reorganizations in the resting state.


Assuntos
Ansiedade/diagnóstico por imagem , Luto , Encéfalo/diagnóstico por imagem , Terapia Cognitivo-Comportamental/métodos , Atenção Plena/métodos , Rede Nervosa/diagnóstico por imagem , Adulto , Idoso , Ansiedade/psicologia , Ansiedade/terapia , Encéfalo/fisiologia , Feminino , Pesar , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Estudos Prospectivos , Descanso/fisiologia
17.
Psychol Health ; 36(9): 1102-1114, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32998574

RESUMO

OBJECTIVE: The present study examined the potential mediating influences of meaning in life and quality of life in the relationship of trait mindfulness and depressive symptoms in lung cancer patients. Design: We adopted a cross-sectional design studying a sample of patients with non-small cell lung cancer, aged 20-65 years, and receiving cancer treatments or follow-up care. Main Outcome Measures: The outcome measures included Beck Depression Inventory-II, European Organisation for Research and Treatment of Cancer Core Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and lung cancer specific complementary measure (EORTC QLQ-LC13), Five Facet Mindfulness Questionnaire, and the meaning in life questionnaire. Results: Among 116 lung cancer patients, 26.72% of them had clinically significant depressive symptoms. The presence of meaning, quality of life (QOL) functioning and symptom distress mediated the relationship of trait mindfulness and depressive symptoms. Multiple mediation analyses found that the presence of meaning in life was the main mediator. Conclusion: The reductions of depressive symptoms might be related to trait mindfulness enhancing lung cancer patients' perceptions of meaning in life. A mindfulness program has the potential to improve depressive symptoms in people with lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Atenção Plena , Carcinoma Pulmonar de Células não Pequenas/terapia , Estudos Transversais , Depressão , Humanos , Qualidade de Vida , Inquéritos e Questionários
18.
PeerJ ; 8: e9981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072436

RESUMO

BACKGROUND: A novel dual MEK/PDK1 inhibitor named 9za has been synthesized by our research team. Preliminary study showed that 9za possessed potent cytotoxicity and proapoptosis in non-small cell lung cancer (NSCLC) cells. Nevertheless, the precise underlying mechanism is vague. METHODS: In this work, we adopted the MTT assay, the Cell Cycle Detection Kit, and the JC-1 staining assay to detect the cell viability, the cell cycle distribution and the mitochondrial membrane potential (MMP), respectively. Cell apoptosis was measured by the morphology observation under a light microscope, Annexin V-FITC/propidium iodide (PI) apoptosis detection and the colorimetric TUNEL assay. Western blot was used to monitor the cell cycle-, apoptosis-related proteins and relevant proteins involved in the signaling pathways. RESULTS: The MTT assay demonstrated that 9za sharply decreased the viability of NSCLC cells. Cell cycle analysis revealed that low concentrations of 9za arrested the cell cycle at the G0/G1 phase , which was further confirmed by the decreased levels of Cyclin D1, cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6). Additionally, morphological observations, Annexin V-FITC/propidium iodide (PI) apoptosis analysis and TUNEL assays indicated that high concentrations of 9za induced cell apoptosis. Furthermore, the JC-1 staining assay revealed that the mitochondrial membrane potential was downregulated following 9za exposure. Western blot also showed that 9za markedly decreased the expression levels of total Bcl-2, Cytochrome C in the mitochondria and BCL2 associated X (BAX) in the cytoplasm. However, the levels of BAX in the mitochondria, Cytochrome C in the cytoplasm, active caspase-9, active caspase-3 and cleaved-PARP showed the opposite changes. Moreover, the dose-dependent decreased phosphorylation levels of PDK1, protein kinase B (Akt), MEK and extracellular signal regulated kinase 1/2 (ERK1/2) after 9za treatment verified that 9za was indeed a dual MEK/PDK1 inhibitor, as we expected. Compared with a single MEK inhibitor PD0325901 or a single PDK1 inhibitor BX517, the dual MEK/PDK1 inhibitor 9za could strengthen the cytotoxic and proapoptotic effect, indicating that the double blocking of the MEK and PDK1 signaling pathways plays stronger cell growth inhibition and apoptosis induction roles than the single blocking of the MEK or PDK1 signaling pathway in NSCLC cells. Our work elucidated the molecular mechanisms for 9za as a novel drug candidate against NSCLC.

19.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32759233

RESUMO

BACKGROUND: The oncolytic Newcastle disease virus (NDV) is inherently able to trigger the lysis of tumor cells and induce the immunogenic cell death (ICD) of tumor cells and is also an excellent gene-engineering vector. The macrophage inflammatory protein-3α (MIP-3α) is a specific chemokine for dendritic cells (DCs). Thus, we constructed a recombinant NDV expressing MIP-3α (NDV-MIP3α) as an in vivo DC vaccine for amplifying antitumor immunities. METHODS: The recombinant NDV-MIP3α was constructed by the insertion of MIP-3α cDNA between the P and M genes. Western blotting assay and ELISA were used to detect MIP-3α, HMGB1, IgG, and ATP in the supernatant and sera. The chemotaxis of DCs was examined by Transwell chambers. The phenotypes of the immune cells (eg, DCs) were analyzed by flow cytometry. The antitumor efficiency of NDV-MIP3α was observed in B16 and CT26 tumor-bearing mice. Immunofluorescence and immunohistochemistry were applied to observe the ecto-calreticulin (CRT) and intratumoral attraction of DCs. Adoptive transfer of splenocytes and antibodies and depletion of T-cell subsets were used to evaluate the relationship between antitumor immunities and the role of the T-cell subtype. RESULTS: The findings show that NDV-MIP3α has almost the same capabilities of tumor lysis and induction of ICD as the wild-type NDV (NDV-WT). MIP-3α secreted by NDV-MIP3α could successfully attract DCs in vitro and in vivo. Both B16 and CT26 cells infected with NDV-MIP3α could strongly promote DC maturation and activation. Compared with NDV-WT, intratumoral injection of NDV-MIP3α and the adoptive transfer of T lymphocytes from mice injected with NDV-MIP3α resulted in a significant suppression of B16 and CT26 tumor growth. The NDV-MIP3α-induced production of tumor-specific cellular and humoral immune responses was dependent on CD8+ T cells and partially on CD4+ T cells. A significant reversion of tumor microenvironments was found in the mice injected with NDV-MIP3α. CONCLUSIONS: Compared with NDV-WT, the recombinant NDV-MIP3α as an in vivo DC vaccine demonstrates enhanced antitumor activities through the induction of stronger system immunities and modulation of the tumor microenvironment. This strategy may be a potential approach for the generation of an in vivo DC vaccine.


Assuntos
Quimiocina CCL20/metabolismo , Vírus da Doença de Newcastle/patogenicidade , Vírus Oncolíticos/metabolismo , Animais , Humanos , Camundongos , Microambiente Tumoral
20.
Front Oncol ; 10: 609275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614493

RESUMO

Toxicarioside O (TCO), a natural product derived from Antiaris toxicaria, has been identified to be a promising anticancer agent. In this study, we aimed to investigate the effect of TCO on the proliferation and epithelial-mesenchymal transition (EMT) of lung cancer cells and its molecular mechanisms. Here, we indicated that TCO inhibits the proliferation of lung cancer cells both in vitro and in vivo. Our results demonstrated that TCO induces apoptosis in lung cancer cells. Moreover, we found that TCO suppresses EMT program and inhibits cell migration in vitro. Mechanistically, TCO decreases the expression of trophoblast cell surface antigen 2 (Trop2), resulting in inhibition of the PI3K/Akt pathway and EMT program. Overexpression of Trop2 rescues TCO-induced inhibition of cell proliferation and EMT. Our findings demonstrate that TCO markedly inhibits cell proliferation and EMT in lung cancer cells and provides guidance for its drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...