Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
2.
Adv Mater ; : e2402739, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762766

RESUMO

Advanced lithium-ion batteries utilize high upper cut-off voltages up to 4.8 V versus lithium metal to reach extraordinary energy densities. Such a harsh environment challenges the cathode stability and requires the construction of robust cathode electrolyte interphases at their electrochemical interface. Inspired by carbonated beverages with supersaturated CO2, here we propose a surface modification strategy that produces effective passivation layer of low modulus from the weakest link. CO2 bubbles preferentially nucleate and grow at rough surfaces, which in oxide cathodes are also the local regions offering fast degradation pathway. Metal ion exchange on carbonated layer assist the construction of highly elastic interface under the guidance of packing factor. Our method enables surface reconstruction at both primary and secondary particle levels, for various cathodes exemplified by high-voltage LiNi0.8Co0.1Mn0.1O2 and LiCoO2. Remarkably, with ultra-high upper cut-off voltage of 4.8 V versus Li+/Li, over 235 mAh g-1 discharge capacity and over 900 W h kg-1 discharge energy at cathode level, ∼90% capacity retention can be obtained for LiNi0.8Co0.1Mn0.1O2 over 100 cycles at 0.5 C with commercial carbonate electrolytes. This carbonated beverage chemistry is promising for constructing high-quality surface passivation in many extreme-condition applications beyond battery cathodes. This article is protected by copyright. All rights reserved.

3.
Adv Mater ; : e2400976, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740388

RESUMO

ZnSO4-based electrolytes for aqueous zinc ion batteries fail to meet practical application metrics due to hydrogen evolution reaction (HER) and dendrite growth. In this work, a highly polarized eutectic additive, glycerophosphorylcholine (GPC) is rationally designed, to regulate the electric double layer (EDL) structure for stable Zn anodes with a high depth of discharge (DOD). On one hand, GPC molecules with abundant hydroxyl groups can precisely regulate the hydrogen bond network in EDL to suppress HER. On the other hand, the enrichment of GPC at the interface is positively responsible for the negative charge density on the Zn surface, which leads to the formation of a robust ZnxPyOz-rich solid-electrolyte interphase and terminates dendrite growth in the charge-rich sites. This EDL-oriented eutectic additive engineering enables highly reversible and selectively (002)-textured Zn anodes to operate for over 1450 h at a high DOD of 45.3%. Meanwhile, a high-capacity (185.7 mAh g-1) aqueous Zn||VS2 full cell shows remarkable cycling stability over 220 cycles with an excellent capacity retention of 90.4% even at a low current density of 0.1 A g-1 (0.5 C). This work sheds light on electrolyte design and interface engineering for high-performance aqueous batteries.

4.
Nat Commun ; 15(1): 3017, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589414

RESUMO

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.

5.
J Am Chem Soc ; 146(11): 7352-7362, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38447048

RESUMO

Knowledge of structure-property relationships in solids with intrinsic low thermal conductivity is crucial for fields such as thermoelectrics, thermal barrier coatings, and refractories. Herein, we propose a new "rigidness in softness" structural scheme for intrinsic low lattice thermal conductivity (κL), which embeds rigid clusters into the soft matrix to induce large lattice anharmonicity, and accordingly discover a new series of chalcogenides Pt3Bi4Q9 (Q = S, Se). Pt3Bi4S9-xSex (x = 3, 6) achieved an intrinsic ultralow κL down to 0.39 W/(m K) at 773 K, which is considerably low among the Bi chalcogenide thermoelectric materials. Pt3Bi4Q9 contains the rigid cubic [Pt6Q12]12- clusters embedded in the soft Bi-Q sublattice, involving multiple bonding interactions and vibration hierarchy. The hierarchical structure yields a large lattice anharmonicity with high Grüneisen parameters (γ) 1.97 of Pt3Bi4Q9, as verified by the effective scatter of low-lying optical phonons toward heat-carrying acoustic phonons. Consequently, the rigid-soft coupling significantly inhibits heat propagation, exhibiting low acoustic phonon frequencies (∼25 cm-1) and Debye temperatures (ΘD = 170.4 K) in Pt3Bi4Se9. Owing to the suppressed κL and considerable power factor (PF), the ZT value of Pt3Bi4S6Se3 can reach 0.56 at 773 K without heavy carrier doping, which is competitive among the pristine Bi chalcogenides. Theoretical calculations predicted a large potential for performance improvement via proper doping, indicating the great potential of this structure type for promising thermoelectric materials.

6.
Nat Commun ; 15(1): 2623, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521817

RESUMO

In-plane anisotropic van der Waals materials have emerged as a natural platform for anisotropic polaritons. Extreme anisotropic polaritons with in-situ broadband tunability are of great significance for on-chip photonics, yet their application remains challenging. In this work, we experimentally characterize through Fourier transform infrared spectroscopy measurements a van der Waals plasmonic material, 2M-WS2, capable of supporting intrinsic room-temperature in-plane anisotropic plasmons in the far and mid-infrared regimes. In contrast to the recently revealed natural hyperbolic plasmons in other anisotropic materials, 2M-WS2 supports canalized plasmons with flat isofrequency contours in the frequency range of ~ 3000-5000 cm-1. Furthermore, the anisotropic plasmons and the corresponding isofrequency contours can be reversibly tuned via in-situ ion-intercalation. The tunable anisotropic and canalization plasmons may open up further application perspectives in the field of uniaxial plasmonics, such as serving as active components in directional sensing, radiation manipulation, and polarization-dependent optical modulators.

7.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534252

RESUMO

The rapid and accurate identification of parasites is crucial for prompt therapeutic intervention in parasitosis and effective epidemiological surveillance. For accurate and effective clinical diagnosis, it is imperative to develop a nucleic-acid-based diagnostic tool that combines the sensitivity and specificity of nucleic acid amplification tests (NAATs) with the speed, cost-effectiveness, and convenience of isothermal amplification methods. A new nucleic acid detection method, utilizing the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease, holds promise in point-of-care testing (POCT). CRISPR/Cas12a is presently employed for the detection of Plasmodium falciparum, Toxoplasma gondii, Schistosoma haematobium, and other parasites in blood, urine, or feces. Compared to traditional assays, the CRISPR assay has demonstrated notable advantages, including comparable sensitivity and specificity, simple observation of reaction results, easy and stable transportation conditions, and low equipment dependence. However, a common issue arises as both amplification and cis-cleavage compete in one-pot assays, leading to an extended reaction time. The use of suboptimal crRNA, light-activated crRNA, and spatial separation can potentially weaken or entirely eliminate the competition between amplification and cis-cleavage. This could lead to enhanced sensitivity and reduced reaction times in one-pot assays. Nevertheless, higher costs and complex pre-test genome extraction have hindered the popularization of CRISPR/Cas12a in POCT.


Assuntos
Líquidos Corporais , Parasitos , Animais , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Bioensaio , Técnicas de Amplificação de Ácido Nucleico
8.
J Transl Med ; 22(1): 254, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459588

RESUMO

BACKGROUND: Although hepatitis B virus (HBV) infection is a major risk factor for hepatic cancer, the majority of HBV carriers do not develop this lethal disease. Additional molecular alterations are thus implicated in the process of liver tumorigenesis. Since phosphatase and tensin homolog (PTEN) is decreased in approximately half of liver cancers, we investigated the significance of PTEN deficiency in HBV-related hepatocarcinogenesis. METHODS: HBV-positive human liver cancer tissues were checked for PTEN expression. Transgenic HBV, Alb-Cre and Ptenfl/fl mice were inter-crossed to generate WT, HBV, Pten-/- and HBV; Pten-/- mice. Immunoblotting, histological analysis and qRT-PCR were used to study these livers. Gp73-/- mice were then mated with HBV; Pten-/- mice to illustrate the role of hepatic tumor biomarker golgi membrane protein 73 (GP73)/ golgi membrane protein 1 (GOLM1) in hepatic oncogenesis. RESULTS: Pten deletion and HBV transgene synergistically aggravated liver injury, inflammation, fibrosis and development of mixed hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). GP73 was augmented in HBV; Pten-/- livers. Knockout of GP73 blunted the synergistic effect of deficient Pten and transgenic HBV on liver injury, inflammation, fibrosis and cancer development. CONCLUSIONS: This mixed HCC-ICC mouse model mimics liver cancer patients harboring HBV infection and PTEN/AKT signaling pathway alteration. Targeting GP73 is a promising therapeutic strategy for cancer patients with HBV infection and PTEN alteration.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Fibrose , Hepatite B/complicações , Vírus da Hepatite B , Inflamação/patologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo
9.
Small ; : e2311638, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342598

RESUMO

Potassium-ion batteries (PIBs) have attracted much attention due to their low production cost and abundant resources. Germanium is a promising alloying-type anode with a high theoretical capacity for PIBs, yet suffering significant volume expansion and sluggish potassium-ion transport kinetics. Herein, a rational strategy is formulated to disperse Ge atoms into transition metal V-S sulfide frameworks to form a loosely packed and metallic GeV4 S8 medium. The theoretical prediction shows that GeV4 S8 is conducive to the adsorption and diffusion of K+ . The V-S frameworks provide fast ion/electron diffusion channels and also help to buffer the volume expansion during K+ insertion. In situ and ex situ characterizations manifest that KGe alloy clusters are constrained and dispersed by potassiated VS2 topological structure during discharging, and revert to the original GeV4 S8 after charging. Consequently, as a novel anode for PIBs, GeV4 S8 provides a high specific capacity of ≈400 mAh g-1 at 0.5 C, maintaining 160 mAh g-1 even at 12.5 C and ≈80% capacity after 1000 cycles at 5 C, superior to most of the state-of-the-art anode materials. The proposed strategy of combining alloy and intercalation dual-functional units is expected to open up a new way for high-capacity and high-rate anode for PIBs.

10.
Nat Commun ; 15(1): 1263, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341471

RESUMO

Metallic 2M or 1T'-phase transition metal dichalcogenides (TMDs) attract increasing interests owing to their fascinating physicochemical properties, such as superconductivity, optical nonlinearity, and enhanced electrochemical activity. However, these TMDs are metastable and tend to transform to the thermodynamically stable 2H phase. In this study, through systematic investigation and theoretical simulation of phase change of 2M WS2, we demonstrate that ultrathin 2M WS2 has significantly higher intrinsic thermal stabilities than the bulk counterparts. The 2M-to-2H phase transition temperature increases from 120 °C to 210 °C in the air as thickness of WS2 is reduced from bulk to bilayer. Monolayered 1T' WS2 can withstand temperatures up to 350 °C in the air before being oxidized, and up to 450 °C in argon atmosphere before transforming to 1H phase. The higher stability of thinner 2M WS2 is attributed to stiffened intralayer bonds, enhanced thermal conductivity and higher average barrier per layer during the layer(s)-by-layer(s) phase transition process. The observed high intrinsic phase stability can expand the practical applications of ultrathin 2M TMDs.

11.
Adv Mater ; 36(19): e2311424, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325426

RESUMO

Apart from Li4Ti5O12, there are few anode substitutes that can be used in commercial high-power lithium-ion batteries. Orthorhombic T-Nb2O5 has recently been proven to be another substitute anode. However, monoclinic B-Nb2O5 of same chemistry is essentially inert for lithium storage, but the underlying reasons are unclear. In order to activate the "inert" B-Nb2O5, herein, nanoporous pseudocrystals to achieve a larger specific capacity of 243 mAh g-1 than Li4Ti5O12 (theoretical capacity: 175 mAh g-1) are proposed. These pseudocrystals are rationally synthesized via a "shape-keep" topological microcorrosion process from LiNbO3 precursor. Compared to pristine B-Nb2O5, experimental investigations reveal that B-Nb2O5- x delivers ≈3000 times higher electronic conductivity and tenfold enhanced Li+ diffusion coefficient. An ≈30% reduction of energy barrier for Li-ion migration is also confirmed by the theoretical calculations. The nanoporous B-Nb2O5- x delivers unique ion/electron transport channels to proliferate the reversible and deeper lithiation, which activate the "inert" B-Nb2O5. The capacitive-like behavior is observed to endow B-Nb2O5- x ultrafast lithium storage ability, harvesting 136 mAh g-1 at 100 C and 72 mAh g-1 even at 250 C, superior to Li4Ti5O12. Pouch-type full cells exhibit the energy density of ≈251 Wh kg-1 and ultrahigh power density up to ≈35 kW kg-1.

12.
Nano Lett ; 24(2): 757-763, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166149

RESUMO

The controllable and low-cost synthesis of nanometal particles is highly desired in scientific and industrial research. Herein, size-tunable Ru nanoparticles were synthesized by using a novel ion-sieve-confined reduction method. The H2TiO3 ion-sieve was used to adsorb Ru3+ into the hydroxyl-enriched porous [TiO3]2- layers. The confined environment of the interlayer space facilitates Ru-Ru collision and bonding during annealing, achieving a precise reduction from Ru3+ to Ru0 without additional reductants. Owing to the confinement effect, Ru0 nanoparticles are uniformly embedded in the pores on the surface of the postannealed TiO2 matrix (Ru@TiO2). Ru@TiO2 exhibited a lower overpotential than Pt/C (57 vs 87 mV at 10 mA cm-2) for the HER in 0.1 M KOH solution. The confinement-induced reduction of metal ions was also preliminarily proved in ion-exchanged zeolites, which provides facile and abundant approaches for the size-controllable synthesis of nanometal catalysts with high catalytic activity.

13.
ACS Nano ; 18(2): 1733-1743, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175544

RESUMO

The carbonaceous anodes in sodium ion batteries suffer from low initial Coulombic efficiency (ICE) and poor cyclability due to rampant solid electrolyte interface (SEI) growth. The concept of the weakly solvating electrolyte (WSE) has been popularized for SEI regulation on the anode by adjusting the cation solvation structure. Nevertheless, the effects on the solvation sheath from the electrode/electrolyte interface are ignored in most WSE applications. In this work, we extend the WSE from the bulk electrolyte to the electrolyte/carbon interface. By recycling asphalt wastes into sp2 C enriched few-layer carbon on hard carbon, a weakly solvating interface is fabricated with lower adsorption energy to electrolyte solvent molecules than a pristine anode (-0.89 vs -1.08 eV for Na/diglyme). Accordingly, more anionic groups are attracted into the solvent-weakened solvation sheath during sodiation (2.30 vs 1.96 coordination number for PF6-). The anion-mediated contact ion pairs facilitate a thin, inorganic-rich SEI layer with a homogeneous distribution, which confers a high ICE of 97.9% and a high capacity of 335.6 mA h g-1 at 1 C (89.5% retention, 1000 cycles). The full battery also manifests an energy density of 209 W h kg-1. This interfacial design is applicable in both ether- and ester-based electrolytes, which is promising in cost-effective modification for carbonaceous electrodes.

14.
Ticks Tick Borne Dis ; 15(2): 102311, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262211

RESUMO

Ticks are specialized ectoparasites that feed on blood, causing physical harm to the host and facilitating pathogen transmission. The genus Haemaphysalis contains vectors for numerous infectious agents. These agents cause various diseases in humans and animals. Mitochondrial genome sequences serve as reliable molecular markers, forming a crucial basis for evolutionary analyses, studying species origins, and exploring molecular phylogeny. We extracted mitochondrial genome from the enriched mitochondria of Haemaphysalis tibetensis and obtained a 14,714-bp sequence. The mitochondrial genome consists of 13 protein-coding genes (PCGs), two ribosomal RNA, 22 transfer RNAs (tRNAs), and two control regions. The nucleotide composition of H. tibetensis mitochondrial genome was 38.38 % for A, 9.61 % for G, 39.32 % for T, and 12.69 % for C. The A + T content of H. tibetensis mitochondrial genome was 77.7 %, significantly higher than the G + C content. The repeat units of H. tibetensis exhibited two identical repeat units of 33 bp in length, positioned downstream of nad1 and rrnL genes. Furthermore, phylogenetic analyses based on the 13 PCGs indicated that Haemaphysalis tibetensis (subgenus Allophysalis) formed a monophyletic clade with Haemaphysalis nepalensis (subgenus Herpetobia) and Haemaphysalis danieli (subgenus Allophysalis). Although the species Haemaphysalis inermis, Haemaphysalis kitaokai, Haemaphysalis kolonini, and Haemaphysalis colasbelcouri belong to the subgenus Alloceraea, which were morphologically primitive hemaphysalines just like H. tibetensis, these four tick species cannot form a single clade with H. tibetensis. In this study, the whole mitochondrial genome sequence of H. tibetensis from Tibet was obtained, which enriched the mitochondrial genome data of ticks and provided genetic markers to study the population heredity and molecular evolution of the genus Haemaphysalis.


Assuntos
Genoma Mitocondrial , Ixodidae , Animais , Humanos , Filogenia , RNA Ribossômico/genética , Tibet
15.
Transl Res ; 268: 51-62, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38244769

RESUMO

Due to soared obesity population worldwide, hepatosteatosis is becoming a major risk factor for hepatocellular carcinoma (HCC). Undertaken molecular events during the progression of steatosis to liver cancer are thus under intensive investigation. In this study, we demonstrated that high-fat diet potentiated mouse liver AKT2. Hepatic AKT2 hyperactivation through gain-of-function mutation of Akt2 (Akt2E17K) caused spontaneous hepatosteatosis, injury, inflammation, fibrosis, and eventually HCC in mice. AKT2 activation also exacerbated lipopolysaccharide and D-galactosamine hydrochloride-induced injury/inflammation and N-Nitrosodiethylamine (DEN)-induced HCC. A positive correlation between AKT2 activity and SCD1 expression was observed in human HCC samples. Activated AKT2 enhanced the production of monounsaturated fatty acid which was dependent on SREBP1 upregulation of SCD1. Blockage of active SREBP1 and ablation of SCD1 reduced steatosis, inflammation, and tumor burden in DEN-treated Akt2E17K mice. Therefore, AKT2 activation is crucial for the development of steatosis-associated HCC which can be treated with blockage of AKT2-SREBP1-SCD1 signaling cascade.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Estearoil-CoA Dessaturase , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
16.
Adv Mater ; 36(6): e2309637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985136

RESUMO

Molybdenum disulfide (MoS2 ) with high theoretical capacity is viewed as a promising anode for sodium-ion batteries but suffers from inferior rate capability owing to the polaron-induced slow charge transfer. Herein, a polaron collapse strategy induced by electron-rich insertions is proposed to effectively solve the above issue. Specifically, 1D [MoS] chains are inserted into MoS2 to break the symmetry states of 2D layers and induce small-polaron collapse to gain fast charge transfer so that the as-obtained thermodynamically stable Mo2 S3 shows metallic behavior with 107 times larger electrical conductivity than that of MoS2 . Theoretical calculations demonstrate that Mo2 S3 owns highly delocalized anions, which substantially reduce the interactions of Na-S to efficiently accelerate Na+ diffusion, endowing Mo2 S3 lower energy barrier (0.38 vs 0.65 eV of MoS2 ). The novel Mo2 S3 anode exhibits a high capacity of 510 mAh g-1 at 0.5 C and a superior high-rate stability of 217 mAh g-1 at 40 C over 15 000 cycles. Further in situ and ex situ characterizations reveal the in-depth reversible redox chemistry in Mo2 S3 . The proposed polaron collapse strategy for intrinsically facilitating charge transfer can be conducive to electrode design for fast-charging batteries.

17.
Environ Res ; 244: 117931, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103774

RESUMO

Arable land is facing the growing challenge of land degradation due to intensive use and this is beginning to affect global food security. However, active and passive restoration can improve soil characteristics and reshape microbial communities. Despite the increasing focus on changes in microbial communities during restoration, the mechanisms underlying how microbes drive the soil quality index (SQI) in arable land restoration remain unclear. In this study, we selected conventional farmland (CF, heavily intensified) and two restoration strategies (AR, artificial restoration; NR, natural restoration), with the same context (including soil texture, climate, etc.), and measured the microbial indicators over 2 years to investigate the mechanisms driving SQI improvement on restored arable land. The AR and NR treatments resulted in a 50% and 58% increase in SQI, respectively, compared to CF as soil nutrient levels increased, resulting in higher microbial biomasses and enzyme activities. Microbial abundance on the AR land was approximately two times greater than on the NR land due to the introduction of legumes. Bacterial diversity declined, while fungi developed in a more diverse direction under the restoration strategies. The AR and NR areas were mainly enriched with rhizobium (Microvirga, Bradyrhizobium), which contribute to healthy plant growth. The pathogenic fungi (Gibberella, Fusarium, Volutella) were more abundant in the CF area and the plant pathogen guild was about five times higher in the restored areas. Following arable land restoration, microbial life history strategies shifted from r-to K-strategists due to the higher proportion of recalcitrant SOC (DOC/SOC decreased by 18%-30%). The altered microbial community in the restored areas created new levels of functionality, with a 2.6%-4.3% decrease in bacterial energy metabolism (oxidative phosphorylation, C fixation, and N metabolism decreased by 7%, 4%, and 6%, respectively). Structural equation modelling suggested that restoration strategy affected SQI either directly by increasing total soil nutrient levels or indirectly by altering the microbial community and that fungal community composition and bacterial diversity made the largest contributions to SQI. These results provided new insights into soil quality improvement from a microbial perspective and can help guide future arable land restoration.


Assuntos
Micobioma , Solo , Bactérias/genética , Plantas , Biomassa , Fungos , Microbiologia do Solo
18.
Genes (Basel) ; 14(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38137020

RESUMO

Eurytrema coelomaticum, a pancreatic fluke, is recognized as a causative agent of substantial economic losses in ruminants. This infection, commonly referred to as eurytrematosis, is a significant concern due to its detrimental impact on livestock production. However, there is a paucity of knowledge regarding the mitochondrial genome of E. coelomaticum. In this study, we performed the initial sequencing of the complete mitochondrial genome of E. coelomaticum. Our findings unveiled that the mitochondrial genome of E. coelomaticum spans a length of 15,831 bp and consists of 12 protein-coding genes, 22 tRNA genes, two rRNA genes, and two noncoding regions. The A+T content constituted 62.49% of the genome. Moreover, all 12 protein-coding genes of E. coelomaticum exhibit the same arrangement as those of E. pancreaticum and other published species belonging to the family Dicrocoeliidae. The presence of a short string of additional amino acids (approximately 20~23 aa) at the N-terminal of the cox1 protein in both E. coelomaticum and E. pancreaticum mitochondrial genomes has contributed to the elongation of the cox1 gene in genus Eurytrema, surpassing that of all previously sequenced Dicrocoeliidae. The phylogenetic analysis displayed a close relationship between E. coelomaticum and E. pancreaticum, along with a genus-level association between Eurytrema and Lyperosomum. These findings underscore the importance of mitochondrial genomic data for comparative studies of Dicrocoeliidae and even Digenea, offering valuable DNA markers for future investigations in the systematic, epidemiological, and population genetic studies of this parasite and other digenean trematodes.


Assuntos
Dicrocoeliidae , Genoma Mitocondrial , Trematódeos , Animais , Dicrocoeliidae/genética , Filogenia , Genoma Mitocondrial/genética , Trematódeos/genética , Sequência de Bases
19.
Nanomicro Lett ; 16(1): 10, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943381

RESUMO

Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost. Nevertheless, such cathodes usually suffer from phase transitions, sluggish kinetics and air instability, making it difficult to achieve high performance solid-state sodium-ion batteries. Herein, the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity, achieving high-rate performance, air stability and electrochemically thermal stability for Na0.95Li0.06Ni0.25Cu0.05Fe0.15Mn0.49O2. This cathode delivers a high reversible capacity (141 mAh g-1 at 0.2C), excellent rate capability (111 mAh g-1 at 8C, 85 mAh g-1 even at 20C), and long-term stability (over 85% capacity retention after 1000 cycles), which is attributed to a rapid and reversible O3-P3 phase transition in regions of low voltage and suppresses phase transition. Moreover, the compound remains unchanged over seven days and keeps thermal stability until 279 ℃. Remarkably, the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g-1 at 5C and keeps retention of 96% after 400 cycles. This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.

20.
ACS Cent Sci ; 9(10): 1905-1912, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37901173

RESUMO

Acetate derived from electrocatalytic CO2 reduction represents a potential low-carbon synthesis approach. However, the CO2-to-acetate activity and selectivity are largely inhibited by the low surface coverage of in situ generated *CO, as well as the inefficient ethenone intermediate formation due to the side reaction between CO2 and alkaline electrolytes. Tuning catalyst microenvironments by chemical modification of the catalyst surface is a potential strategy to enhance CO2 capture and increase local *CO concentrations, while it also increases the selectivity of side reduction products, such as methane or ethylene. To solve this challenge, herein, we developed a hydrophilic amine-tailed, dendrimer network with enhanced *CO intermediate coverage on Cu catalytic sites while at the same time retaining the in situ generated OH- as a high local pH environment that favors the ethenone intermediate toward acetate. The optimized amine-network coordinated Cu catalyst (G3-NH2/Cu) exhibits one of the highest CO2-to-acetate Faradaic efficiencies of 47.0% with a partial current density of 202 mA cm-2 at -0.97 V versus the reversible hydrogen electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...