Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749130

RESUMO

In this study, the effects of micro-positive pressure formed by covering with a semipermeable membrane in the heating phase of dairy manure composting on greenhouse gas emissions and the mechanism of reducing methane emissions by the archaeal community were investigated. A large-scale experiment was conducted with semipermeable membrane-covered composting (SMC), forced aeration composting (FAC), and traditional static composting (TSC) groups. The results showed that the oxygen concentration and methanogen abundance were key factors in regulating methane emissions. In the heating phase of SMC, the micro-positive pressure could enhance the O2 utilization rate and heating rate, resulting in Methanobrevibacter and Methanobacterium greatly decreasing, and the abundance of mcrA decreased by 90.03%, while that of pmoA did not increase. Compared with FAC and TSC, the cumulative methane emissions in SMC decreased by 51.75% and 96.04%, respectively. Therefore, the micro-positive pressure could effectively reduce greenhouse gas emissions by inhibiting the growth of methanogens.


Assuntos
Archaea , Compostagem , Gases de Efeito Estufa , Esterco , Metano , Compostagem/métodos , Gases de Efeito Estufa/análise , Metano/metabolismo , Archaea/metabolismo , Animais , Indústria de Laticínios
2.
Bioresour Technol ; 399: 130623, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518876

RESUMO

Livestock manure often contains various pollutants. The aim of this study was to investigate how adding amoxicillin (AMX), Cu, and both AMX and Cu (ACu) affected humification during composting and the microbial mechanisms involved. The cellulose degradation rates were 16.96%, 10.86%, and 9.01% lower, the humic acid contents were 18.71%, 12.89%, and 16.78% lower, and the humification degrees were 24.72%, 24.16%, and 15.73% lower for the AMX, Cu, and ACu treatments, respectively, than the control. Adding AMX and Cu separately or together inhibited humic acid formation and decreased the degree of humification, but the degree of humification was decreased less by ACu than by AMX or Cu separately. The ACu treatment decreased the number of core bacteria involved in humic acid formation and decreased carbohydrate and amino acid metabolism during the maturing period, and thereby delayed humic acid formation and humification. The results support composting manure containing AMX and Cu.


Assuntos
Compostagem , Substâncias Húmicas , Animais , Bovinos , Amoxicilina , Solo , Cobre , Esterco
3.
Waste Manag ; 176: 41-51, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262072

RESUMO

In recent research, biochar has been proven to reduce the greenhouse gases and promote organic matter during the composting. However, gas degradation may be related to the microstructure of compost. To investigate the mechanism of biochar additive, composting was performed using swine manure, wheat straw and biochar and representative solid compost samples were analyzed to characterize the mixed biochar and compost particles. We focused on the microscale, such as the particle size distributions, surface morphologies, aerobic layer thicknesses and the functional groups. The biochar and compost particle agglomerations gradually became weaker and the predominant particle size in the experiment group was < 200 µm. The aerobic layer thickness (Lp) was determined by infrared spectroscopy using the wavenumbers 2856 and 1568 cm-1, which was 0-50 µm increased as composting proceeded in both groups. The biochar increased Lp and facilitated oxygen penetrating the compost particle cores. Besides, in the biochar-swine manure particle interface, the aliphatic compound in the organic components degraded and the content of aromaticity increased with the composting process, which was indicated by the absorption intensity at 2856 cm-1 decreasing trend and the absorption intensity at 1568 cm-1 increasing trend. In summary, biochar performed well in the microscale of compost pile.


Assuntos
Compostagem , Animais , Suínos , Esterco , Triticum/química , Triticum/metabolismo , Nitrogênio/análise , Solo/química , Carvão Vegetal/química
4.
Bioresour Technol ; 393: 130079, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993066

RESUMO

Greenhouse gas (GHG) emissions from manure management processes deserve more attention. Using three industrial-scale experiments, this study comprehensively evaluated the effects of different aeration coupled with semi-permeable membrane-covered strategies on the structure and function of bacterial communities and their impact on GHG emissions during dairy manure aerobic composting. The succession of the bacterial communities tended to be consistent for similar aeration strategies. Ruminiclostridium and norank_f__MBA03 were significantly positively correlated with the methane emission rate, and forced aeration coupled with semi-permeable membrane-covered decreased GHG emissions by inhibiting these taxa. Metabolism was the most active function of the bacterial communities, and its relative abundance accounted for 75.69%-80.23%. The combined process also enhanced carbohydrate metabolism and amino acid metabolism. Therefore, forced aeration coupled with semi-permeable membrane-covered represented a novel strategy for reducing global warming potential by regulating the structure and function of the bacterial communities during aerobic composting of dairy manure.


Assuntos
Compostagem , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Esterco , Aquecimento Global , Bactérias , Metano/análise , Solo , Óxido Nitroso/análise
5.
Water Res ; 247: 120767, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897995

RESUMO

Thermal hydrolysis (TH) is widely employed in combination with anaerobic digestion (AD) to efficiently treat primary sludge and waste-activated sludge in municipal wastewater treatment plants. In this study, four different scenarios-conventional AD (S1), TH-AD (S2), AD-TH-AD (S3), and characteristics-based AD-TH-AD (S4, primary AD only for primary sludge)-were evaluated to determine the optimal deployment of TH and AD for treating primary sludge and waste-activated sludge to maximize net energy output. The maximum net energy output of 4899 MJ/t-TSfed (per ton total solids of sludge fed) was achieved in S4 when assuming the recovered heat was only used for AD heating and surplus heat was wasted, and the net energy output of S4 was 70.8 % higher than that of S1 and 48.6 % higher than that of S2. This remarkable improvement was attributed to a reduction of > 15.2 % in refractory compounds, resulting in a 17 % increase in methane yield. Importantly, this study provides the first comparison of refractory compounds between inter-thermal hydrolysis (inter-TH) and pre-thermal hydrolysis (pre-TH) using a simulated A2O process. Overall, this study provides innovative insights and strategies for enhancing the TH and AD process performance based on the specific characteristics of sewage sludge derived from wastewater treatment plants.


Assuntos
Esgotos , Purificação da Água , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Hidrólise , Metano
6.
J Environ Manage ; 345: 118727, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531862

RESUMO

Aerobic composting is a promising technology for converting manure into organic fertilizer with low capital investment and easy operation. However, the large nitrogen losses in conventional aerobic composting impede its development. Interconversion of nitrogen species was studied during membrane-covered aerobic composting (MCAC) and conventional aerobic composting, and solid-, liquid-, and gas-phase nitrogen migration pathways were identified by performing nitrogen balance measurements. During the thermophilic phase, nitrogenous organic matter degradation and therefore NH3 production were faster during MCAC than uncovered composting. However, the water films inside and outside the membrane decreased NH3 release by 13.92%-22.91%. The micro-positive pressure environment during MCAC decreased N2O production and emission by 20.35%-27.01%. Less leachate was produced and therefore less nitrogen and other pollutants were released during MCAC than uncovered composting. The nitrogen succession patterns during MCAC and uncovered composting were different and NH4+ storage in organic nitrogen fractions was better facilitated during MCAC than uncovered composting. Overall, MCAC decreased total nitrogen losses by 33.24%-50.07% and effectively decreased environmental pollution and increased the nitrogen content of the produced compost.


Assuntos
Compostagem , Poluentes Ambientais , Nitrogênio/análise , Solo , Esterco
7.
J Hazard Mater ; 455: 131569, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172386

RESUMO

Pollutants in livestock manure have a compound effect during aerobic composting, but research to date has focused more on single factors. This study investigated the effects of adding amoxicillin (AMX), copper (Cu) and both (ACu) on nitrogen transformation and the microbial mechanisms in cow manure aerobic composting with wheat straw. In this study, compared with CK, AMX, Cu, and ACu increased NH3 cumulative emissions by 32.32%, 41.78% and 8.32%, respectively, due to their inhibition of ammonia oxidation. Coexisting AMX and Cu decreased the absolute abundances of amoA/ nxrA genes and increased the absolute abundances of nirS /nosZ genes, but they had an antagonistic effect on the changes in functional gene abundances. Pseudomonas and Luteimonas were enriched during the thermophilic and cooling periods due to the addition of AMX and ACu, which enhanced denitrification in these two groups. Moreover, adding AMX and/or Cu led to more complex bacterial networks, but the effect of the two pollutants was lower than those of the individual pollutants. These findings provide theoretical and experimental support for controlling typical combined pollution with antibiotics and heavy metals in livestock manure.


Assuntos
Amoxicilina , Compostagem , Animais , Bovinos , Amoxicilina/farmacologia , Esterco , Cobre , Nitrogênio , Solo
8.
Artigo em Inglês | MEDLINE | ID: mdl-36833698

RESUMO

Composting is widely used to recycle a variety of different organic wastes. In this study, dairy manure, chicken litter, biosolids, yard trimmings and food waste were selected as representative municipal and agricultural feedstocks and composted in simulated thermophilic composting reactors to compare and evaluate the GHG emissions. The results showed that the highest cumulative emissions of CO2, CH4 and N2O were observed during yard trimmings composting (659.14 g CO2 kg-1 DM), food waste composting (3308.85 mg CH4 kg-1 DM) and chicken litter composting (1203.92 mg N2O kg-1 DM), respectively. The majority of the carbon was lost in the form of CO2. The highest carbon loss by CO2 and CH4 emissions and the highest nitrogen loss by N2O emission occurred in dairy manure (41.41%), food waste (0.55%) and chicken litter composting (3.13%), respectively. The total GHG emission equivalent was highest during food waste composting (365.28 kg CO2-eq ton-1 DM) which generated the highest CH4 emission and second highest N2O emissions, followed by chicken litter composting (341.27 kg CO2-eq ton-1 DM), which had the highest N2O emissions. The results indicated that accounting for GHG emissions from composting processes when it is being considered as a sustainable waste management practice was of great importance.


Assuntos
Compostagem , Eliminação de Resíduos , Eliminação de Resíduos/métodos , Dióxido de Carbono/análise , Esterco , Alimentos , Efeito Estufa , Carbono , Óxido Nitroso/análise , Solo
9.
Bioresour Technol ; 369: 128463, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36503091

RESUMO

Carbon and nitrogen evolution and bacteria and fungi succession in two functional membrane-covered aerobic composting (FMCAC) systems and a conventional aerobic composting system were investigated. The micro-positive pressure in each FMCAC system altered the composting microenvironment, significantly increased the oxygen uptake rates of microbes (p < 0.05), and increased the abundance of cellulose- and hemicellulose-degrading microorganisms. Bacteria and fungi together influenced the conversion between carbon and nitrogen forms. FMCAC made the systems less anaerobic and decreased CH4 production and emissions by 22.16 %-23.37 % and N2O production and emissions by 41.34 %-45.37 % but increased organic matter degradation and NH3 production and emissions by 16.91 %-90.13 %. FMCAC decreased carbon losses, nitrogen losses, and the global warming potential by 7.97 %-11.24 %, 15.43 %-34.00 %, and 39.45 %-42.16 %, respectively. The functional membrane properties (pore size distribution and air permeability) affected fermentation process and gaseous emissions. A comprehensive assessment indicated that FMCAC has excellent prospects for application.


Assuntos
Compostagem , Micobioma , Carbono , Nitrogênio/análise , Bactérias , Solo , Esterco
10.
Sci Total Environ ; 864: 161065, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565881

RESUMO

Aerobic composting is a humification process accompanied by nitrogen loss. This study is the first research systematically investigating and elucidating the mechanism by which functional membrane-covered aerobic composting (FMCAC) reduces nitrogen loss and enhances humification. The variations in bioavailable organic nitrogen (BON) and humic substances (HSs) in different composting systems were quantitatively studied, and the functional succession patterns of fungal groups were determined by high-throughput sequencing and FUNGuild. The FMCAC improved oxygen utilization and pile temperature, increased BON by 29.95 %, reduced nitrogen loss by 34.00 %, and enhanced humification by 26.09 %. Meanwhile, the FMCAC increased the competitive advantage of undefined saprotroph and significantly reduced potential pathogenic fungi (<0.10 %). Structural equation modeling indicated that undefined saprotroph facilitated the humification process by increasing the production of BON and storing BON in stable humic acid. Overall, the FMCAC increased the safety, stability, and quality of the final compost product.


Assuntos
Compostagem , Nitrogênio/análise , Substâncias Húmicas/análise , Temperatura , Fungos , Solo , Esterco
11.
Artigo em Inglês | MEDLINE | ID: mdl-36497578

RESUMO

Homogenous spatial distribution of fermentation characteristics, local anaerobic conditions, and large amounts of greenhouse gas (GHGs) emissions are common problems in large-scale aerobic composting systems. The aim of this study was to examine the effects of a semi-membrane covering on the spatial homogeneity and efficiency of fermentation in aerobic composting systems. In the covered group, the pile was covered with a semi-membrane, while in the non-covered group (control group), the pile was uncovered. The covered group entered the high-temperature period earlier and the spatial gradient difference in the group was smaller compared with the non-covered group. The moisture content loss ratio (5.91%) in the covered group was slower than that in the non-covered group (10.78%), and the covered group had a more homogeneous spatial distribution of water. The degradation rate of organic matter in the non-covered group (11.39%) was faster than that in the covered group (10.21%). The final germination index in the covered group (85.82%) was higher than that of the non-covered group (82.79%) and the spatial gradient difference in the covered group was smaller. Compared with the non-covered group, the oxygen consumption rate in the covered group was higher. The GHG emissions (by 30.36%) and power consumption in the covered group were reduced more significantly. The spatial microbial diversity of the non-covered group was greater compared with the covered group. This work shows that aerobic compost covered with a semi-membrane can improve the space homogeneity and efficiency of fermentation.


Assuntos
Compostagem , Gases de Efeito Estufa , Esterco/análise , Solo , Fermentação , Nitrogênio/análise
12.
Bioresour Technol ; 362: 127849, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36031127

RESUMO

This study investigated the effects of micro-aerobic conditions on fungal community succession and dissolved organic matter transformation during dairy manure membrane-covered composting. The results showed that lignocellulose degradation in the micro-aerobic composting group (AC: oxygen concentration < 5 %) was slower than that in the static composting group (SC: oxygen concentration < 1 %), but the dissolved organic carbon in AC was greatly increased. The degree of aromatic polymerization was higher in AC than in SC. But the carboxyl carbon and alcohol/ether biodegradations were faster in SC than in AC, which promoted carbon dioxide and methane emissions, respectively. The relative abundances of pathogenic and dung saprotrophic fungi in AC were 44.6 % and 10.59 % lower than those in SC on day 30, respectively. Moreover, the relative abundance of soil saprotrophs increased by 5.18 % after micro-aerobic composting. Therefore, micro-aerobic conditions improved the quality of compost products by influencing fungal community evolution and dissolved organic matter transformation.


Assuntos
Compostagem , Micobioma , Matéria Orgânica Dissolvida , Esterco/microbiologia , Oxigênio , Solo
13.
Bioresour Technol ; 361: 127697, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35905876

RESUMO

To investigate the effect of intermittent aeration on oxygen dynamics, organic matter degradation and main gas emissions, a lab-scale pig manure composting experiment was conducted with intermittent aeration (I_A, 30-min on and 30-min off) and continuous aeration (C_A). Although aeration volume and oxygen supply of I_A was only half of C_A, I_A could obviously enhance the oxygen utilization efficiency by 96.67 % and reduce energy dissipation for aeration by 50.87 %. Based on the comprehensive analysis of total organic matter, total carbon, total nitrogen, cellulose, hemicellulose and lignin contents, there was no significant difference in organic matter degradation between I_A and C_A (p > 0.05). Moreover, a reduction of 21.71 %, 38.93 %, 44.40 % and 62.19 % of CH4, N2O and the total GHG emission equivalent as well as NH3 emissions was realized, respectively, in I_A compared with C_A. Therefore, adopting intermittent aeration was a useful strategy and choice for high-efficiency, high-quality and environment-friendly composting.


Assuntos
Compostagem , Esterco , Animais , Metano , Nitrogênio/metabolismo , Oxigênio , Solo , Suínos
14.
Sci Total Environ ; 845: 157343, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842148

RESUMO

In this study, the effects of semipermeable membrane-covered on methane emissions and potential pathogens during industrial-scale composting of the solid fraction of dairy manure were investigated. The results showed that the oxygen concentration in the membrane-covered group (CT) was maintained above 10 %, and the cumulative methane emission in CT was >99 % lower than that in the control group (CK). Microbial analysis showed that the bacterial genus Thermus and the fungal genus Mycothermus were dominant in CT, and the richness and diversity of the bacterial community were greater than those of the fungal community. At the end of the composting, the relative abundance of potential bacterial pathogens in CT was 32.59 % lower than that in CK, and the relative abundance of potential fungal pathogens in each group was <2 %. Structural equation models revealed that oxygen concentration was a major factor influencing the bacterial diversity in CT, and the increase of oxygen concentration could limit methane emissions by inhibiting the growth of anaerobic bacteria. Therefore, membrane-covered composting could effectively improve compost safety and reduce methane emissions by regulating microbial community structure.


Assuntos
Compostagem , Micobioma , Bactérias , Esterco/microbiologia , Metano , Oxigênio , Solo
15.
Sci Total Environ ; 838(Pt 1): 155921, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577093

RESUMO

The world is facing huge phosphate (P) shortage and anaerobic digestion (AD) is a recognized technology to promote nutrient (N and P) recycling. The composition of P speciation in the digestate is essential for the fertilizing effect. However, how P speciation in the digestates interacts with the AD process conditions is unknown. Therefore, interaction of P speciation in digestates with AD process conditions was investigated by using a chemical sequential extraction method (Hedley fractionation) and X-ray diffraction; specifically, the effects of organic loading rate (OLR), temperature, and substrate composition were investigated. The results showed that OLR and feedstock affected P speciation in the digestate significantly due to different ion species and ionic strengths. The H2O-P concentration in chicken manure with straw (CMS) and dairy manure with straw (DMS) digestates decreased by 44.04-48.76% and 48.88-50.49%, respectively, as the OLR increased from 2 to 4 kg VS m-3 d-1. Simultaneously, HCl-P increased by 38.02-44.01% in the CMS digestates due to Ca-P and Mg-P formation, indicating that Ca-P and Mg-P formation was positively correlated with OLR, whereas P mobility decreased. Further, thermophilic temperature conditions were more conducive for the formation of insoluble P than mesophilic temperature conditions in the digestates due to the thermodynamic driving force of the reactions. The results would facilitate the understanding of P transformation in the AD process under the influence of feedstock, OLR, and temperature. From the viewpoint of nutrient management, lower OLR and temperature are more beneficial for a fast P availability, whereas higher OLR and temperature are more helpful for storage and export because of P precipitated into solid phase of digestate.


Assuntos
Esterco , Fósforo , Anaerobiose , Animais , Digestão , Temperatura , Triticum
16.
Bioresour Technol ; 354: 127205, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462015

RESUMO

This study investigated and assessed the effect of the functional-membrane covering technique (FMCT) on nitrogen succession during aerobic composting. By comparative experiments involving high-throughput sequencing and qPCR, nitrogen metabolism (including the ko00910 pathway and functional enzyme and gene abundances) was analyzed, and the nitrogen succession mechanism was identified. The FMCT created a micro-positive pressure, improved the aerobic conditions, and increased the oxygen utilization rate and temperature. This strongly affected the nitrogen metabolism pathway and down-regulated the nitrifying and denitrifying bacteria abundances. The FMCT up-regulated the relative abundance of glutamate dehydrogenase and down-regulated the absolute abundances of AOB and nxrA. This and the high temperature increased NH3 emissions by 13.78%-73.37%. The FMCT down-regulated the abundances of denitrifying gene groups (nirS + nirK)/nosZ and nitric oxide reductase associated with N2O emissions and decreased N2O emissions by 16.44%-41.15%. The results improve the understanding of the mechanism involved in nitrogen succession using the FMCT.


Assuntos
Compostagem , Desnitrificação , Redes e Vias Metabólicas , Nitrogênio/análise , Óxido Nitroso/análise , Solo , Microbiologia do Solo
17.
Bioresour Technol ; 354: 127214, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462017

RESUMO

In this study, the microbial mechanism of reducing methanogenesis during membrane-covered aerobic composting from solid dairy manure was investigated. An industrial-scale experiment was carried out to compare a static composting group (SC) and a forced aeration composting group (AC) with a semipermeable membrane-covered composting group (MC + AC). The results showed that the semipermeable membrane-covered could improve the oxygen utilization rate and inhibit the anaerobic bacterial genus Hydrogenispora and archaea order Methanobacteriales. During the membrane-covered period, the acetoclastic methanogenesis module in MC + AC, AC and SC decreased by 0.58%, 0.05% and 0.04%, respectively, and the cdhC gene in the acetoclastic pathway was found to be decreased by 65.51% only in MC + AC. Changes in methane metabolism pathways resulted in a 27.48% lower average methane concentration in MC + AC than in SC. Therefore, the semipermeable membrane-covered strategy can effectively reduce methane production during dairy manure aerobic composting by restricting the methanogenesis of the acetoclastic pathway.


Assuntos
Compostagem , Esterco , Archaea , Metano , Solo
18.
Bioresour Technol ; 352: 127118, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35398213

RESUMO

This study investigated the effect of biochar on antibiotics and antibiotic resistance genes (ARGs) during aerobic composting of pig manure. First, the composition and content of antibiotics in the manure were determined qualitatively and quantitatively. Biochar promoted the degradation of these antibiotics (oxytetracycline, chlortetracycline, and tetracycline). The relative abundance (RA) of antibiotic-resistant bacteria carrying ARGs accounted for about 29.32% of the total bacteria. Firmicutes and Actinomycetes were dominant phylum-level bacteria at the early and late stages of composting, respectively. Biochar decreased the total RA of ARGs by 16.83%±4.10%. tetW and tetL, closely related to tetracycline resistance, were significantly diminished during aerobic composting, and biochar was able to promote this removal. Biochar enhanced RAs of Mycobacterium tuberculosis kasA mutant. RAs of ARGs related to antibiotic efflux pumps, such as baeS and arlS, remained at a high level. Conclusively, biochar promotes degradation of antibiotics and removal of ARGs.


Assuntos
Compostagem , Animais , Antibacterianos/farmacologia , Bactérias/genética , Carvão Vegetal , Genes Bacterianos/genética , Esterco/microbiologia , Metabolômica , Metagenômica , Suínos
19.
Environ Pollut ; 299: 118879, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35081462

RESUMO

This study evaluated the greenhouse gas emissions of solid dairy manure storage with the micro-aerobic group (MA; oxygen concentration <5%) and control group (CK; oxygen concentration <1%), and explained the difference in greenhouse gas emissions by exploring bacterial community succession. The results showed that the MA remained the micro-aerobic conditions, which the maximum and average oxygen concentrations were 4.1% and 1.9%, respectively; while the average oxygen concentrations of the CK without intervention management was 0.5%. Compared with the CK, carbon dioxide and methane emissions in MA were reduced by 78.68% and 99.97%, respectively, and nitrous oxide emission was increased by almost three times with a small absolute loss, but total greenhouse gas emissions decreased by 91.23%. BugBase analysis showed that the relative abundance of aerobic bacteria in CK decreased to 0.73% on day 30, while that in MA increased to 6.56%. Genus MBA03 was significantly different between the two groups (p < 0.05) and was significantly positively correlated with carbon dioxide and methane emissions (p < 0.05). A structural equation model also revealed that the oxygen concentration and MBA03 of the MA had significant direct effects on methane emission rate (p < 0.001). The research results could provide theoretical basis and measures for directional regulation of greenhouse gas emission reduction during dairy manure storage.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Efeito Estufa , Gases de Efeito Estufa/análise , Esterco/análise , Metano/análise , Óxido Nitroso/análise
20.
Front Microbiol ; 13: 1079114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687604

RESUMO

The environmental accumulation and spread of antibiotic resistance pose a major threat to global health. Aerobic composting has become an important hotspot of combined pollution [e.g., antibiotic resistance genes (ARGs) and heavy metals (HMs)] in the process of centralized treatment and resource utilization of manure. However, the interaction mechanisms and environmental drivers of HMs resistome (MRGs), antibiotic resistance (genotype and phenotype), and microbiome during aerobic composting under the widely used amoxicillin (AMX) selection pressure are still poorly understood. Here, we investigated the dynamics of HMs bioavailability and their MRGs, AMX-resistant bacteria (ARB) and antibiotic resistome (ARGs and intI1), and bacterial community to decipher the impact mechanism of AMX by conducting aerobic composting experiments. We detected higher exchangeable HMs and MRGs in the AMX group than the control group, especially for the czrC gene, indicating that AMX exposure may inhibit HMs passivation and promote some MRGs. The presence of AMX significantly altered bacterial community composition and AMX-resistant and -sensitive bacterial structures, elevating antibiotic resistome and its potential transmission risks, in which the proportions of ARB and intI1 were greatly increased to 148- and 11.6-fold compared to the control group. Proteobacteria and Actinobacteria were significant biomarkers of AMX exposure and may be critical in promoting bacterial resistance development. S0134_terrestrial_group was significantly negatively correlated with blaTEM and czrC genes, which might play a role in the elimination of some ARGs and MRGs. Except for the basic physicochemical (MC, C/N, and pH) and nutritional indicators (NO3 --N, NH4 +-N), Bio-Cu may be an important environmental driver regulating bacterial resistance during composting. These findings suggested the importance of the interaction mechanism of combined pollution and its synergistic treatment during aerobic composting need to be emphasized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA