Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell Rep ; 43(4): 114086, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598335

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but only works in a subset of patients due to the insufficient infiltration, persistent exhaustion, and inactivation of T cells within a tumor. Herein, we develop an engineered probiotic (interleukin [IL]-12 nanoparticle Escherichia coli Nissle 1917 [INP-EcN]) acting as a living drug factory to biosynthesize anti-PD-1 and release IL-12 for initiating systemic antitumor immunity through T cell cascade regulation. Mechanistically, INP-EcN not only continuously biosynthesizes anti-PD-1 for relieving immunosuppression but also effectively cascade promote T cell activation, proliferation, and infiltration via responsive release of IL-12, thus reaching a sufficient activation threshold to ICB. Tumor targeting and colonization of INP-EcNs dramatically increase local drug accumulations, significantly inhibiting tumor growth and metastasis compared to commercial inhibitors. Furthermore, immune profiling reveals that anti-PD-1/IL-12 efficiently cascade promote antitumor effects in a CD8+ T cell-dependent manner, clarifying the immune interaction of ICB and cytokine activation. Ultimately, such engineered probiotics achieve a potential paradigm shift from T cell exhaustion to activation and show considerable promise for antitumor bio-immunotherapy.


Assuntos
Interleucina-12 , Probióticos , Receptor de Morte Celular Programada 1 , Animais , Interleucina-12/metabolismo , Probióticos/farmacologia , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Humanos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Escherichia coli/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Nanopartículas , Feminino , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38214820

RESUMO

Oral insulin (INS) is predicted to have the most therapeutic advantages in treating diabetes to repress hepatic glucose production through its potential to mimic the endogenous insulin pathway. Many oral insulin delivery systems have been investigated. Layered double hydroxide (LDH) as an inorganic material has been widely used in drug delivery thanks to its appealing features such as good biocompatibility, low toxicity, and excellent loading capability. However, when used in oral drug delivery, the effectiveness of LDH is limited due to the acidic degradation in the stomach. In this study, to overcome these challenges, chitosan (Chi) and alginate (Alg) dual-coated LDH nanocomposites with the loading of insulin (Alg-Chi-LDH@INS) were developed by the layered-by-layered method for oral insulin delivery with dynamic size of ~ 350.8 nm, negative charge of ~ - 13.0 mV, and dispersity index 0.228. The insulin release profile was evaluated by ultraviolet-visible spectroscopy. The drug release profiles evidenced that alginate and chitosan coating partially protect insulin release from a burst release in acidic conditions. The analysis using flow cytometry showed that chitosan coating significantly enhanced the uptake of LDH@INS by Caco-2 cells compared to unmodified LDH and free insulin. Further in the in vivo study in streptozocin-induced diabetic mice, a significant hypoglycemic effect was maintained following oral administration with great biocompatibility (~ 50% blood glucose level reduction at 4 h). This research has thus provided a potential nanocomposite system for oral delivery of insulin.

3.
J Digit Imaging ; 36(3): 988-1000, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36813978

RESUMO

COVID-19 has claimed millions of lives since its outbreak in December 2019, and the damage continues, so it is urgent to develop new technologies to aid its diagnosis. However, the state-of-the-art deep learning methods often rely on large-scale labeled data, limiting their clinical application in COVID-19 identification. Recently, capsule networks have achieved highly competitive performance for COVID-19 detection, but they require expensive routing computation or traditional matrix multiplication to deal with the capsule dimensional entanglement. A more lightweight capsule network is developed to effectively address these problems, namely DPDH-CapNet, which aims to enhance the technology of automated diagnosis for COVID-19 chest X-ray images. It adopts depthwise convolution (D), point convolution (P), and dilated convolution (D) to construct a new feature extractor, thus successfully capturing the local and global dependencies of COVID-19 pathological features. Simultaneously, it constructs the classification layer by homogeneous (H) vector capsules with an adaptive, non-iterative, and non-routing mechanism. We conduct experiments on two publicly available combined datasets, including normal, pneumonia, and COVID-19 images. With a limited number of samples, the parameters of the proposed model are reduced by 9x compared to the state-of-the-art capsule network. Moreover, our model has faster convergence speed and better generalization, and its accuracy, precision, recall, and F-measure are improved to 97.99%, 98.05%, 98.02%, and 98.03%, respectively. In addition, experimental results demonstrate that, contrary to the transfer learning method, the proposed model does not require pre-training and a large number of training samples.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Raios X
4.
Adv Mater ; 35(18): e2211509, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807373

RESUMO

Despite its clinical success, chimeric antigen receptor T (CAR T)-cell immunotherapy remains limited in solid tumors, owing to the harsh physical barriers and immunosuppressive microenvironment. Here a CAR-T-cell-based live microrobot (M-CAR T) is created by decorating CAR T with immunomagnetic beads using click conjugation. M-CAR Ts are capable of magnetic-acoustic actuation for precision targeting and in situ activation of antitumor immune responses. Sequential actuation endows M-CAR Ts with magnetically actuated anti-flow and obstacle avoidance as well as tissue penetration driven by acoustic propulsion, enabling efficient migration and accumulation in artificial tumor models. In vivo, sequentially actuated M-CAR Ts achieves long-distance targeting and accumulate at the peritumoural area under programmable magnetic guidance, and subsequently acoustic tweezers actuate M-CAR Ts to migrate into deep tumor tissues, resulting in a 6.6-fold increase in accumulated exogenous CD8+ CAR T cells compared with that without actuation. Anti-CD3/CD28 immunomagnetic beads stimulate infiltrated CAR T proliferation and activation in situ, significantly enhancing their antitumor efficacy. Thus, this sequential-actuation-guided cell microrobot combines the merits of autonomous targeting and penetration of intelligent robots with in situ T-cell immunoactivation, and holds considerable promise for precision navigation and cancer immunotherapies.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Fenômenos Magnéticos , Imunoterapia Adotiva , Linfócitos T , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biomaterials ; 293: 121992, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603445

RESUMO

Sonodynamic therapy (SDT), a combination of low-intensity ultrasound with a sonosensitizer, has been explored as a promising alternative for cancer therapy. However, condensed extracellular matrix (ECM) resulting in poor perfusion and extreme hypoxia in solid tumor potentially compromises effective SDT. Herein, we develop a novel cleavable collagenase-assistant and O2-supplied nanosonosensitizer (FePO2@HC), which is embedded through fusing collagenase (CLG) and human serum albumin (HSA), followed by encapsulating Ferric protoporphyrin (FeP) and dioxygen. As a smart carrier, HSA is stimuli-responsive and collapsed by reduced glutathione (GSH) overexpressed in tumor, resulting to the release of the components in FePO2@HC. The released CLG acting as an artificial scissor, degrades the collagen fibers in tumor, thus, breaking tumor tissue and enhancing FePO2 accumulation in tumor inner with higher than that without CLG. Simultaneously, oxygen molecules are released from FePO2 in hypoxic environment and alleviate the tumor hypoxia. As a sonosensitizer, FeP is subsequently irradiated by ultrosound wave (US) and activates surrounding dioxygen to generate amount of singlet oxygen (1O2). Contributed from the ECM-degradation, such SDT-based nanosystem with increased sonosensitizer permeability and oxygen content highly improved the tumor inhibition efficacy without toxic effects. This study presents a new paradigm for ECM depletion-based strategy of deep-seated penetration, and will expand the nanomedicine application of metalloporphyrin sonosensitizers in SDT.


Assuntos
Metaloporfirinas , Nanopartículas , Neoplasias , Terapia por Ultrassom , Humanos , Neoplasias/terapia , Neoplasias/patologia , Oxigênio/metabolismo , Colagenases , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio
6.
Artigo em Inglês | MEDLINE | ID: mdl-36567668

RESUMO

Living cells have become ideal therapeutic agents for cancer treatment owing to their innate activities, such as efficient tumor targeting and delivery, easy engineering, immunomodulatory properties, and fewer adverse effects. However, cell agents are often fragile to rigorous tumor microenvironment (TME) and limited by inadequate therapeutic responses, leading to unwanted treatment efficacy. Cell nanomodification, particularly the cell surface-nanoengineering has emerged as reliable and efficient strategy that not only combines cell activity properties with nanomaterials but also endows them with extra novel functions, enabling to achieve remarkable treatment results. In this review, we systematically introduce two major strategies have been adopted to develop cell surface engineering with nanomaterials, mainly including living cell nano-backpacks and cell membrane-mimicking nanoparticles (NPs). Based on various functional NPs and cell types, we focus on reviewing the cell-surface nanoengineering for targeted drug delivery, immune microenvironment regulation, and precisely antitumor therapy. The advances and challenges of cell surface-nanoengineered antitumor agents for cancer therapy applications are further discussed in future clinical practice. This review provides an overview of the advances in cell surface-engineering for targeting immunoregulation and treatment and could contribute to the future of advanced cell-based antitumor therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Cells at the Nanoscale.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Sistemas de Liberação de Medicamentos , Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Nanomedicina , Microambiente Tumoral , Membrana Celular
7.
Small Methods ; 7(5): e2201412, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36572642

RESUMO

Despite immunotherapy emerging as a vital approach to improve cancer treatment, the activation of efficient immune responses is still hampered by immunosuppression, especially due to the low tumor immunogenicity. Immunogenic cell death (ICD) is a promising strategy to reshape the tumor microenvironment (TME) for achieving high immunogenicity. Various stimuli are able to effectively initiate their specific ICD by utilizing the corresponding ICD-inducer. However, the ICD-guided antitumor immune effects are usually impaired by various biological barriers and TME-associated immune resistance. Biomimetic active materials are being extensively explored as guided agents for ICD due to their unique advantages. In this review, two major strategies are systematically introduced that have been employed to exploit biomimetic active materials guided ICD for cancer immunotherapy, mainly including naive organism-derived nanoagents and engineered bioactive platforms. This review outlines the recent advances in the field at biomimetic active materials guided physiotherapy, chemotherapy, and biotherapy for ICD induction. The advances and challenges of biomimetic active materials guided ICD for cancer immunotherapy applications are further discussed in future clinical practice. This review provides an overview of the advances of biomimetic active materials for targeting immunoregulation and treatment and can contribute to the future of advanced antitumor combination therapy.


Assuntos
Antineoplásicos , Neoplasias , Morte Celular Imunogênica , Biomimética , Imunoterapia , Terapia de Imunossupressão , Neoplasias/terapia
8.
Front Vet Sci ; 9: 853761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799839

RESUMO

Porcine Circovirus-like (PCL) virus, a new emerging virus, has been widely detected in Guangdong, Guangxi, and Anhui provinces in China, which may be a novel agent causing severe diarrhea in newborn piglets and tending to spread widely. Evidence suggests that the virus is related to hemorrhagic enteritis and diarrhea, and many newborn piglets were emaciated to death after infection. Therefore, a sensitive, quick, and accurate detection system for virus detection and epidemiological investigation is necessary. In this study, we developed a real-time quantitative PCR assay based on SYBR green for the detection of PCL virus. The ORF4 conserved region of PCL virus was found by the alignment of the uploaded genome sequences to design specific primers, and the primers were tested and showed good specificity, sensitivity, and reproducibility. Approximately, 138 fecal samples were obtained from diarrheal pigs in South China from June to December 2021. Approximately, 22.46% (31/138) of the samples and 40% (8/20) of the pig farms were positive for PCL virus, respectively, by using this method. Moreover, it is worth noting that the virus was first detected in Hainan and Jiangxi Provinces of China, which means that the virus may spread widely in China. Through evolutionary tree analysis and partial sequence comparison, there are some differences of virus genes in each province, suggesting that there is a risk of variation, and the four PCL virus strains showed a sequence similarity of 86.7%-87.8% for the rep gene and 92.2%-92.9% for the Rep protein, respectively, with Bo-Circo-like virus that is detected in bovine, which further demonstrates a close relationship between the two viruses that originated from different animals. In conclusion, our study provides a useful diagnostic approach to PCL virus detection and epidemiological inquiry. Meanwhile, the epidemic data using this real-time qPCR assay provide evidence for the widespread variations and epidemic of the virus in South China, and warn the appropriate measures for prevention, and control of porcine circovirus-like virus infection should be under consideration in pig production.

9.
Biomaterials ; 281: 121341, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34995901

RESUMO

Although chimeric antigen receptor T (CAR T) cell immunotherapy has demonstrated remarkable success in clinical, therapeutic effects are still limited in solid tumor due to lack of activated T cell infiltration in immunosuppression of tumor microenvironment. Herein, we develop IL-12 nanostimulant-engineered CAR T cell (INS-CAR T) biohybrids for boosting antitumor immunity of CAR T cells via immunofeedback. As stimulating nanochaperone, IL-12-loaded human serum albumin (HSA) nanoparticles are effectively conjugated onto CAR T cells via bioorthogonal chemistry without influencing their antitumor capabilities. IL-12 is responsively released from INS-CAR T biohybrids in presence of the increased thiol groups on cell-surface triggered by tumor antigens. In return, released IL-12 obviously promotes the secretion of CCL5, CCL2 and CXCL10, which further selectively recruits and expands CD8+ CAR T cells in tumors. Ultimately, the immune-enhancing effects of IL-12 nanochaperone significantly boost CAR T cell antitumor capabilities, dramatically eliminated solid tumor and minimized unwanted side effects. Hence, immunofeedback INS-CAR T biohybrids, which include INS that serves as an intelligent 'nanochaperone', could provide a powerful tool for efficient and safe antitumor immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Interleucina-12 , Neoplasias/terapia , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biomater Sci ; 9(22): 7412-7419, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34751282

RESUMO

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) treated patients ultimately develop disease progression, about 50% of which are involved in the emergence of a p.Thr790Met (T790M) mutation acquiring drug resistance. In order to solve the aforementioned problem, a therapeutic nanoparticles DGA is developed to overcome EGFR-T790M resistance via downstream anti-apoptotic signal transduction blocking by a combination with persuading mitochondrial dysfunction and inhibiting miRNA expression. As the concept of design, chitosan-derived nanocarrier DCAFP, capable of persuading mitochondrial dysfunction, is demonstrated to convey gefitinib (GFT) and miR21 inhibitor (anti-miR21) to form DGA nanoparticles. The superior accumulation of antitumor therapeutics and synergistic blocking of downstream signal transduction by mitochondrial dysfunction and miRNA regulation lead to high sensitivity of DGA nanoparticles to EGFR-T790M mutated non-small cell lung cancer (NSCLC) cells with significant inhibition of tumor cell growth. The in vivo study demonstrates superior safety and antitumor efficacy of EGFRT790M mutated lung cancer mouse models. These results highlight the promise of DGA nanoparticles for enhancing GFT sensitivity to EGFRT790M NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quitosana , Neoplasias Pulmonares , Nanopartículas , Transdução de Sinais/efeitos dos fármacos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia
11.
Future Oncol ; 17(33): 4481-4495, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34374301

RESUMO

Aims: Individualized patient profiling is instrumental for personalized management in hepatocellular carcinoma (HCC). This study built a model based on bidirectional deep neural networks (BiDNNs), an unsupervised machine-learning approach, to integrate multi-omics data and predict survival in HCC. Methods: DNA methylation and mRNA expression data for HCC samples from the The Cancer Genome Atlas database were integrated using BiDNNs. With optimal clusters as labels, a support vector machine model was developed to predict survival. Results: Using the BiDNN-based model, samples were clustered into two survival subgroups. The survival subgroup classification was an independent prognostic factor. BiDNNs were superior to multimodal autoencoders. Conclusion: This study constructed and validated a BiDNN-based model for predicting prognosis in HCC, with implications for individualized therapies in HCC.


Lay abstract In this study, one unsupervised machine-learning algorithm, namely bidirectional deep neural networks (BiDNNs), was used to learn DNA methylation data and RNA-seq data for hepatocellular carcinoma (HCC) patients, and correlations were captured. Based on the output of BiDNNs, HCC patients were classified into a good prognosis subgroup and a poor prognosis subgroup using the K-means clustering method. Patients in the first group are more likely to survive or live much longer than patients in the second group. The survival subgroups were closely associated with the survival of HCC patients. Different treatment options should be chosen for the two subgroups. This study proposes a BiDNNs-based strategy for survival stratification in HCC and may help doctors select optimal therapies for each patient.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/mortalidade , Aprendizado Profundo , Neoplasias Hepáticas/mortalidade , Recidiva Local de Neoplasia/epidemiologia , Adulto , Idoso , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Estudos de Coortes , Metilação de DNA , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/prevenção & controle , Prognóstico , RNA Mensageiro/metabolismo , RNA-Seq , Medição de Risco/métodos
12.
Small ; 17(14): e2007494, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711191

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable clinical success in eradicating hematologic malignancies. However, hostile microenvironment in solid tumors severely prevents CAR-T cells migrating, infiltrating, and killing. Herein, a nanoengineered CAR-T strategy is reported for enhancing solid tumor therapy through bioorthogonal conjugation with a nano-photosensitizer (indocyanine green nanoparticles, INPs) as a microenvironment modulator. INPs engineered CAR-T biohybrids (CT-INPs) not only retain the original activities and functions of CAR-T cells, but it is further armed with fluorescent tracing and microenvironment remodeling abilities. Irradiated with laser, CT-INPs demonstrate that mild photothermal intervention destroys the extracellular matrix, expanded blood vessels, loosened compact tissue, and stimulated chemokine secretion without damping CAR-T cell activities. Those regulations induce an immune-favorable tumor microenvironment for recruitment and infiltration of CT-INPs. CT-INPs triggered photothermal effects collapse the physical and immunological barriers of solid tumor, and robustly boosted CAR-T immunotherapy. Therefore, CAR-T biohybrids provide reliable treatment strategy for solid tumor immunotherapy via microenvironment reconstruction.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T , Microambiente Tumoral
13.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 49(3): 364-374, 2020 05 25.
Artigo em Chinês | MEDLINE | ID: mdl-32762172

RESUMO

OBJECTIVE: To design and synthesize folate-modified pH-responsive chitosan-based nanomicelles and investigate the in vitro anti-tumor activity of the drug-loaded micelles. METHODS: CHI-DMA was obtained by reductive amination reaction of aldehyde-based chitosan and hydrophilic amine compounds, and CHI-DMA-LA was obtained by condensation reaction with lauric acid; FA-CHI-DMA-LA was obtained after modification with folic acid (FA). The drug-loaded nanomicelles FA-CHI-DMA-LA/DOX were assembled by solvent change method. The physicochemical properties of polymers were characterized by hydrogen nuclear magnetic resonance and transmission electron microscope. The particle size and surface potential were determined by dynamic light scattering method. Folic acid access rate, doxorubicin (DOX) loading rate and entrapped efficiency were measured by UV-vis spectrophotometer. The drug release properties of DOX-loaded micelles in vitro were monitored by fluorescence spectrophotometer at different pHs (7.4, 6.5, 5.0). The cytotoxicity against human oral cancer KB cells was detected by MTT assay. Fluorescence microscope and flow cytometry were applied to investigate the phagocytosis of DOX-loaded micelles on KB cells. RESULTS: FA-CHI-DMA-LA was synthesized. The particle sizes of FA-CHI-DMA-LA-1 and FA-CHI-DMA-LA-2 micelles which used for the subsequent experiments were (73±14) nm and (106±15) nm, zeta potential were (15.59±1.98) mV and (21.20±2.35) mV, respectively. The drug loading rates of drug-loaded micelles FA-CHI-DMA-LA-1/DOX and FA-CHI-DMA-LA-2/DOX are (4.08±1.12)%and (4.12±0.44)%, respectively. In vitro drug release is pH-responsive, with cumulative release of DOX up to 37%and 36%at pH 5.0, which is about 1.5 times higher than that of pH 7.4. For FA-CHI-DMA-LA micelles with 1.25 to 125 µg/mL concentration, the survival rate of KB cells is more than 70%after incubation for 24 hours. The cell uptake of FA-CHI-DMA-LA/DOX micelles was enhanced compared to CHI-DMA-LA/DOX, and the cell uptake was higher in incubation without FA medium than that with FA. Compared with free DOX or CHI-DMA-LA/DOX, FA-CHI-DMA-LA/DOX nanomicelles showed higher cyctoxicity to KB cells, especially the FA-CHI-DMA-LA-2/DOX nanomicelles, the cell survival rate was about 17% after incubation for 24 hours. CONCLUSIONS: FA-modified chitosan-based nanomicelle with good biocompatibility was successfully prepared, which exhibits tumor microenvironmental pH responsive drug release and tumor targeting.


Assuntos
Nanoestruturas , Antineoplásicos , Quitosana , Doxorrubicina , Portadores de Fármacos , Ácido Fólico , Humanos , Micelas , Polímeros
14.
Life Sci ; 250: 117552, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32179074

RESUMO

AIMS: This study aimed to explore the possible mechanism of trauma-induced laryngotracheal stenosis and potential protective and therapeutic efficacy of quercetin on trauma-induced laryngotracheal stenosis. MAIN METHODS: The expression and activity of fibrotic factors [interleukin (IL)-6, IL-8, autophagy related 5 (ATG5), collagen (COL)-1, tumor growth factor (TGF)-ß COL-3, microtubule-associated proteins 1A/1B light chain 3A (LC3), and vascular endothelial growth factor (VEGF)] and fibrotic signaling mediators [mammalian target of rapamycin (mTOR) and phosphorylated AKT (pAKT)] were detected by real-time quantitative PCR (qRT-PCR), ELISA, Western blot, and immunohistochemical staining, respectively, in the lipopolysaccharide (LPS)-induced WI-38 (a human embryonic lung fibroblast cell line) cellular fibrotic model and a trauma-induced rabbit tracheal stenosis model, with and without quercetin treatment. KEY FINDINGS: Pre-treatment with quercetin significantly reversed the LPS-induced upregulation of pro-fibrotic factors (IL-6, IL-8, COL-1, COL-3, LC3) and fibrotic signaling mediators (mTOR and AKT), and it induced the downregulation of ATG5 in the WI-38 cells. Furthermore, the anti-fibrotic activity of quercetin was confirmed in the trauma-induced rabbit tracheal stenosis model. Thus, the nasogastric administration of quercetin attenuated the tracheal stenosis of the rabbit tracheal stenosis model, in addition to effectively reversing an increase in pro-fibrotic factors (VEGF, IL-6, TGF-ß, COL-1, and COL-3) and fibrotic signaling mediators (mTOR and AKT), as well as downregulating ATG5 of the rabbit tracheal stenosis model. SIGNIFICANCE: Quercetin exhibits anti-fibrotic activity by inhibiting pro-fibrotic factors and AKT/mTOR signaling pathway, in addition to activating autophagy activity. This study provided experimental evidence supporting the application of quercetin in tracheal stenosis, clinically.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Traqueia/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Autofagia , Linhagem Celular , Sobrevivência Celular , Constrição Patológica/tratamento farmacológico , Regulação para Baixo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Lipopolissacarídeos , Masculino , Coelhos , Transdução de Sinais , Traqueia/patologia
15.
Adv Mater ; 32(16): e1908185, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108390

RESUMO

Cytomembrane-derived nanoplatforms are an effective biomimetic strategy in cancer therapy. To improve their functionality and expandability for enhanced vaccination, a eukaryotic-prokaryotic vesicle (EPV) nanoplatform is designed and constructed by fusing melanoma cytomembrane vesicles (CMVs) and attenuated Salmonella outer membrane vesicles (OMVs). Inheriting the virtues of the parent components, the EPV integrates melanoma antigens with natural adjuvants for robust immunotherapy and can be readily functionalized with complementary therapeutics. In vivo prophylactic testing reveals that the EPV nanoformulation can be utilized as a prevention vaccine to stimulate the immune system and trigger the antitumor immune response, combating tumorigenesis. In the melanoma model, the poly(lactic-co-glycolic acid)-indocyanine green (ICG) moiety (PI)-implanted EPV (PI@EPV) in conjunction with localized photothermal therapy with durable immune inhibition shows synergetic antitumor effects as a therapeutic vaccine. The eukaryotic-prokaryotic fusion strategy provides new perspectives for the design of tumor-immunogenic, self-adjuvanting, and expandable vaccine platforms.


Assuntos
Melanoma/prevenção & controle , Nanomedicina/métodos , Fototerapia , Salmonella/química , Vacinação/métodos , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Verde de Indocianina/química , Melanoma/patologia , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
16.
Nano Lett ; 20(1): 11-21, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31858807

RESUMO

We herein propose a bioengineering approach where bacterial outer membrane vesicles (OMVs) were coated on drug-loaded polymeric micelles to generate an innovative nanomedicine for effective cancer immunotherapy and metastasis prevention. Whereas OMVs could activate the host immune response for cancer immunotherapy, the loaded drug within polymeric micelles would exert both chemotherapeutic and immunomodulatory roles to sensitize cancer cells to cytotoxic T lymphocytes (CTLs) and to kill cancer cells directly. We demonstrated that the systemic injection of such a bioinspired immunotherapeutic agent would not only provide effective protective immunity against melanoma occurrence but also significantly inhibited tumor growth in vivo and extended the survival rate of melanoma mice. Importantly, the nanomedicine could also effectively inhibit tumor metastasis to the lung. The bioinspired immunomodulatory nanomedicine we have developed repurposes the bacterial-based formulation for cancer immunotherapy, which also defines a useful bioengineering strategy to the improve current cancer immunotherapeutic agents and delivery systems.


Assuntos
Bactérias/química , Membrana Celular/química , Portadores de Fármacos , Imunoterapia , Melanoma Experimental , Nanomedicina , Animais , Bioengenharia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Imunidade Celular/efeitos dos fármacos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Carbohydr Polym ; 227: 115339, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590870

RESUMO

Poor buffering capacity of chitosan (CS) results in insufficient intracellular gene release which poses the major barrier in gene delivery. Herein, we reconstructed pristine CS with propylamine (PA), (diethylamino) propylamine (DEAPA), and N, N-dimethyl- dipropylenetriamine (DMAMAPA) to obtain a series of alkylamine-chitosan (AA-CS). The introduction of multiple amino groups with rational ratios functionally enhance the buffering capacity of AA-CS, among which DMAPAPA-CS showed buffering capacity of 1.58 times that of chitosan. The reconstructed AA-CS functionally enhance the ability of gene binding and endosomal escape. It was observed that the DMAPAPA-CS/pDNA complexes exhibit a notable gene delivery efficiency, which promotes the functionalization of loaded pDNA. Importantly, the in vivo delivery assay reveals that the deep penetration issue can be resolved using DMAPAPA-CS gene delivery vector. Finally, the DMAPAPA-CS is applied to deliver the therapeutic p53 gene in A549 bearing mice, showing efficient therapeutic potential for cancer.


Assuntos
Aminas/administração & dosagem , Quitosana/administração & dosagem , DNA/administração & dosagem , Endossomos , Técnicas de Transferência de Genes , RNA Interferente Pequeno/administração & dosagem , Proteína Supressora de Tumor p53/genética , Células A549 , Aminas/química , Aminas/farmacocinética , Animais , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/farmacocinética , DNA/química , Endocitose , Eritrócitos/efeitos dos fármacos , Feminino , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética
18.
Oncol Lett ; 18(5): 4503-4514, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31611959

RESUMO

Aberrant genomic expression and methylation serve important roles in cancer development. Integrated analysis of genetic and methylation profiles may identify potential tumor marker genes for colorectal cancer (CRC) prediction. In the current study, DNA methylation and mRNA expression profiles associated with CRC were downloaded from The Cancer Genome Atlas database. Differentially expressed mRNAs and methylated genes between tumor samples and adjacent healthy tissues were identified. Candidate tumor marker genes and prognostic clinical factors were screened according to univariable and multivariable Cox regression analysis. A total of 218 DEGs with aberrant methylation levels were screened from tumor samples. A risk prediction model was constructed based on identified genes and clinical factors. Randomization tests were used to evaluate the performance of the prediction model, including area under the curve (AUC) calculation and cross-validation. Cox regression analysis revealed that eight genes and six prognostic clinical factors were significantly associated with survival outcomes. Functional and pathway enrichment analysis revealed that the eight genes were mainly involved in 'cell adhesion', 'fatty acid metabolism' and 'cytokine receptor interaction' pathways. After combining six clinical factors with eight genes, the accuracy of risk prediction model has been increased intensively. The P-values representing the association between risk grouping and prognosis decreased from 0.009 to 0.001 and the AUC increased from 0.992 to 0.999, indicating that the comprehensive risk prediction model exhibited a good performance for disease prognosis prediction. The current study integrated genomic and methylation profiles and identified eight tumor marker genes in CRC. These candidate genes may improve the prediction accuracy of CRC prognosis.

19.
ACS Appl Mater Interfaces ; 11(10): 9850-9859, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30788951

RESUMO

Chemo-immunotherapy is an important tool to overcome tumor immune suppression in cancer immunotherapy. Herein, we report a surface-layer (S-layer) protein-enhanced immunotherapy strategy based on cell membrane-coated S-CM-HPAD nanoparticles for the effective malignant tumor therapy and metastasis inhibition. The S-CM-HPAD NPs could effectively deliver the tumor antigen, DOX, and immunoadjuvant to the homotypic tumor by the homotypic targeting ability of the coated cell membrane. In addition to its ability to induce tumor cell death, the loaded DOX could enhance the immunotherapy response by inhibition of myeloid-derived suppressor cells (MDSCs). Because of the intrinsic adjuvant property and capability to surface display epitopes and proteins, the S-layers localized on the surface of S-CM-HPAD NPs potentiated the immune response to the antigen. The results confirmed that the protective immunity against tumor occurrence was promoted effectively by prompting proliferation of lymphocytes and secretion of cytokine caused by the tumor-associated antigen and adjuvant. The excellent combinational therapeutic effects on the inhibition of tumor growth and metastasis in the melanoma tumor models demonstrated that the S-layer-enhanced immunotherapeutic method is a promising strategy for tumor immunotherapy of malignant tumor growth and metastasis.


Assuntos
Antígenos de Neoplasias/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Imunoconjugados/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Membrana Celular/química , Membrana Celular/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunoconjugados/química , Imunoconjugados/imunologia , Melanoma Experimental/patologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Nanopartículas/química , Metástase Neoplásica , Propriedades de Superfície
20.
J Cancer Res Ther ; 10 Suppl: C222-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25450287

RESUMO

OBJECTIVE: To further evaluation the diagnosis accuracy of serum cancer antigen 125 (CA125) in the diagnosis of ovarian cancer in Chinese patients. MATERIALS AND METHODS: The PubMed, Wanfang and CNKI databases were electric searched and relevant diagnosis trials were reviewed and finally included in this meta-analysis. The diagnosis sensitivity, specificity, positive likely hood ratio (+LR), negative likely hood ratio (-LR), diagnostic odds ratio (DOR) and receiver operating characteristic curve were pooled by Meta DiSc 1.4 software. RESULTS: Nineteen studies with a total of 2426 subjects were included in this meta-analysis. The pooled sensitivity, specificity, +LR, -LR and DOR were 0.75 (95% confidence interval = 0.73-0.78), 0.80 (0.77-0.82), 4.52 (3.27-6.26), 0.31 (0.28-0.35) and 15.76 (10.45-23.75) respectively. The area under the summary receiver operating characteristic curve was 0.84. CONCLUSION: Serum CA125 was potential biomarker for diagnosis of ovarian cancer with acceptable diagnosis value.


Assuntos
Antígeno Ca-125/sangue , Proteínas de Membrana/sangue , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Povo Asiático , Feminino , Humanos , Curva ROC , Sensibilidade e Especificidade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...