Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
J Chromatogr A ; 1726: 464894, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733926

RESUMO

Cyclic volatile methylsiloxanes (cVMS) have been widely found in various types of environmental media and attracted increasing attention as new pollutants. However, there is still a great challenge in the accurate quantification of trace cVMS, due to their volatility, and the high background originating from GC/MS accessories and surroundings. In this work, the main sources of the high background were investigated in detail for octamethylcyclotetrasiloxane (D4), decmethylcyclopentasiloxane (D5) and dodecmethylcyclohexosiloxane (D6). Several effective measures were employed to minimize these backgrounds, including the delayed injection method to minimize the interference from the injection septum. Then, a GC-MS method was developed for the accurate determination of D4, D5 and D6, with a linear range of 2 - 200 µg/L. The coefficient of determination was 0.9982-0.9986, the limit of detection (LOD) was 0.40-0.52 µg/L, and the quantitative range was 1.88-190 µg/L. Good reproducibility and recovery were obtained, indicating the reliability of the established analytical method.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Siloxanas , Siloxanas/análise , Siloxanas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Volatilização , Compostos Orgânicos Voláteis/análise
2.
Ultrasonics ; 141: 107344, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772060

RESUMO

Ultrasonic microneedle patches, a class of ultrasound-driven transdermal drug delivery systems, are promising in addressing bacterial biofilms. This device has been proven to be more effective in treating Staphylococcus aureus biofilms than drug in free solution. However, there exists a notable gap in understanding how various excitation conditions and material parameters affect drug delivery efficiency. This study aims to fill this void by conducting an comprehensive multi-physics numerical analysis of ultrasonic microneedle patches, with the ultimate goal of enhancing drug delivery. First, we investigate the impact of various ultrasound frequencies on drug penetration depths. The findings reveal that local resonance can accelerate drug release within a shorter time window (first 1.5 h), whereas non-resonant frequencies enable more profound and prolonged diffusion. This information is crucial for medical professionals in selecting the most effective frequency for optimal drug administration. Furthermore, our investigation extends to the effects of applied voltage on temperature distribution, a critical aspect for ensuring medical safety during the application of these patches. Additionally, we examine how particles of different sizes respond to acoustic pressure and streaming fields, providing valuable insights for tailoring drug delivery strategies to specific therapeutic needs. Overall, our findings offer comprehensive guidelines for the effective use of ultrasonic microneedle patches, potentially shifting the paradigm in patient care and enhancing the overall quality of life.

3.
Rapid Commun Mass Spectrom ; 38(11): e9738, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572671

RESUMO

RATIONALE: Accurate identification of old rice samples from new ones benefits their market circulation and consumers. However, the current detection methods are still not satisfactory because of their insufficient accuracy or (and) time-consuming process. METHODS: Chelating carboxylic acids (CCAs) were selectively extracted from rice, by stirring with chelating resin and a dilute Na2CO3 solution. The green analytical chemistry guidelines for sample preparation were investigated by using the green chemistry calculator AGREE prep. The extractant was determined by liquid chromatography-mass spectrometry (LC/MS), and statistical analysis of the analytical data was carried out to evaluate the significance of the difference by ChiPlot. RESULTS: The limit of quantitation for the CCAs is in the range of 1 to 50 ng/mL, with a reasonable reproducibility. The CCAs in 23 rice samples were determined within a wide concentration range from 0.03 to 1174 µg/g. Intriguingly, the content of citric acid, malonic acid, α-ketoglutaric acid and cis-aconite acid in new rice was each found to be distinctively higher than that in old rice by several times. Even mixtures of old and new rice were found to show much difference in the concentration of citric acid and malic acid. CONCLUSION: A green analytical method has been developed for the simultaneous determination of CCAs by LC/MS analysis, and the identification of old rice samples from new ones was easily carried out according to their CCA content for the first time. The results indicated that the described method has powerful potential for the accurate identification of old rice samples from new ones.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Oryza , Cromatografia Líquida/métodos , Ácidos Carboxílicos , Oryza/química , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Ácido Cítrico , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida
4.
Metabolites ; 14(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38248854

RESUMO

The major liver cancer subtype is hepatocellular carcinoma (HCC). Studies have indicated that a better prognosis is related to the presence of tumor-infiltrating lymphocytes (TILs) in HCC. However, the molecular pathways that drive immune cell variation in the tumor microenvironment (TME) remain poorly understood. Glycosylation (GLY)-related genes have a vital function in the pathogenesis of numerous tumors, including HCC. This study aimed to develop a GLY/TME classifier based on glycosylation-related gene scores and tumor microenvironment scores to provide a novel prognostic model to improve the prediction of clinical outcomes. The reliability of the signatures was assessed using receiver operating characteristic (ROC) and survival analyses and was verified with external datasets. Furthermore, the correlation between glycosylation-related genes and other cells in the immune environment, the immune signature of the GLY/TME classifier, and the efficacy of immunotherapy were also investigated. The GLY score low/TME score high subgroup showed a favorable prognosis and therapeutic response based on significant differences in immune-related molecules and cancer cell signaling mechanisms. We evaluated the prognostic role of the GLY/TME classifier that demonstrated overall prognostic significance for prognosis and therapeutic response before treatment, which may provide new options for creating the best possible therapeutic approaches for patients.

5.
Mol Med Rep ; 29(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38240082

RESUMO

The intracellular pathway of Janus kinase/signal transducer and activator of transcription (JAK/STAT) and modification of nucleosome histone marks regulate the expression of proinflammatory mediators, playing an essential role in carcinogenesis, antiviral immunity and the interaction of host proteins with Herpesviral particles. The pathway has also been suggested to play a vital role in the clinical course of the acute infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS­CoV­2; known as coronavirus infection­2019), a novel human coronavirus initially identified in the central Chinese city Wuhan towards the end of 2019, which evolved into a pandemic affecting nearly two million people worldwide. The infection mainly manifests as fever, cough, myalgia and pulmonary involvement, while it also attacks multiple viscera, such as the liver. The pathogenesis is characterized by a cytokine storm, with an overproduction of proinflammatory mediators. Innate and adaptive host immunity against the viral pathogen is exerted by various effectors and is regulated by different signaling pathways notably the JAK/STAT. The elucidation of the underlying mechanism of the regulation of mediating factors expressed in the viral infection would assist diagnosis and antiviral targeting therapy, which will help overcome the infection caused by SARS­CoV­2.


Assuntos
COVID-19 , Herpesviridae , Humanos , Carcinogênese , Herpesviridae/metabolismo , Janus Quinases/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição STAT/metabolismo
6.
Mol Pharm ; 21(2): 745-759, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38148514

RESUMO

Starvation therapy is an innovative approach in cancer treatment aimed at depriving cancer cells of necessary resources by impeding tumor angiogenesis or blocking the energy supply. In addition to the commonly observed anaerobic glycolysis energy supply mode, adipocyte-rich tumor tissue triggers the fatty acid energy supply pathway, which fuels the proliferation and metastasis of cancer cells. To completely disrupt these dual-energy-supply pathways, we developed an exceptional nanoreactor. This nanoreactor consisted of yolk-shell mesoporous organosilica nanoparticles (YSMONs) loaded with a fatty acid transport inhibitor (Dox), conjugated with a luminal breast-cancer-specific targeting aptamer, and integrated with a glucose oxidation catalyst (GOx). Upon reaching cancer cells with the assistance of the aptamer, the nanoreactor underwent a structural collapse of the shell triggered by the high concentration of glutathione within cancer cells. This collapse led to the release of GOx and Dox, achieving targeted delivery and exhibiting significant efficacy in starving therapy. Additionally, the byproducts of glucose metabolism, gluconic acid and H2O2, enhanced the acidity and reactive oxygen species levels of the intracellular microenvironment, inducing oxidative damage to cancer cells. Simultaneously, released Dox acted as a potent broad-spectrum anticancer drug, inhibiting the activity of carnitine palmitoyltransferase 1A and exerting marked effects. Combining these effects ensures high anticancer efficiency, and the "dual-starvation" nanoreactor has the potential to establish a novel synergistic therapy paradigm with considerable clinical significance. Furthermore, this approach minimizes damage to normal organs, making it highly valuable in the field of cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Neoplasias , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Peróxido de Hidrogênio/química , Antineoplásicos/farmacologia , Glutationa , Ácidos Graxos , Nanopartículas/química , Neoplasias/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
7.
J Fungi (Basel) ; 9(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38132760

RESUMO

PURPOSE: The aim of this study is to establish a loop-mediated isothermal amplification (LAMP) method for the rapid detection of vulvovaginal candidiasis (VVC). METHODS: We developed and validated a loop-mediated isothermal amplification (LAMP) method for detecting the most common Candida species associated with VVC, including C. albicans, N. glabratus, C. tropicalis, and C. parapsilosis. We evaluated the specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), and Kappa value of the LAMP method to detect different Candida species, using the conventional culture method and internal transcribed spacer (ITS) sequencing as gold standards and smear Gram staining and real-time Rolymerase Chain Reaction (PCR) as controls. RESULTS: A total of 202 cases were enrolled, of which 88 were VVC-positive and 114 were negative. Among the 88 positive patients, the fungal culture and ITS sequencing results showed that 67 cases (76.14%) were associated with C. albicans, 13 (14.77%) with N. glabratus, 5 (5.68%) with C. tropicalis, and 3 (3.41%) with other species. Regarding the overall detection rate, the LAMP method presented sensitivity, specificity, PPV, NPV, and Kappa values of 90.91%, 100%, 100%, 93.4%, and 0.919, respectively. Moreover, the LAMP had a specificity of 100% for C. albicans, N. glabratus, and C. tropicalis, with a sensitivity of 94.03%, 100%, and 80%, respectively. Moreover, the microscopy evaluation had the highest sensitivity, while the real-time PCR was less specific for C. albicans than LAMP. In addition, CHROMagar Candida was inferior to LAMP in detecting non-albicans Candida (NAC) species. CONCLUSIONS: Based on the cost-effective, rapid, and inexpensive characteristics of LAMP, coupled with the high sensitivity and specificity of our VVC-associated Candida detection method, we provided a possibility for the point-of-care testing (POCT) of VVC, especially in developing countries and some laboratories with limited resources.

8.
J Clin Transl Hepatol ; 11(5): 1192-1200, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37577238

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant tumor with high incidence and cancer mortality worldwide. Post-translational modifications (PTMs) of proteins have a great impact on protein function. Almost all proteins can undergo PTMs, including phosphorylation, acetylation, methylation, glycosylation, ubiquitination, and so on. Many studies have shown that PTMs are related to the occurrence and development of cancers. The findings provide novel therapeutic targets for cancers, such as glypican-3 and mucin-1. Other clinical implications are also found in the studies of PTMs. Diagnostic or prognostic value, and response to therapy have been identified. In HCC, it has been shown that glycosylated alpha-fetoprotein (AFP) has a higher detection rate for early liver cancer than conventional AFP. In this review, we mainly focused on the diagnostic and prognostic value of PTM, in order to provide new insights into the clinical implication of PTM in HCC.

9.
Analyst ; 148(19): 4820-4828, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37606537

RESUMO

Cervical cancer is a significant global health issue primarily caused by high-risk types of human papillomavirus (HPV). Recent studies have reported an association between Trichomonas vaginalis (T. vaginalis) infections and HPV infections, highlighting the importance of simultaneously detecting these pathogens for effective cervical cancer risk management. However, current methods for detecting both T. vaginalis and HPV are limited. In this study, we present a novel approach using a microfluidic-chip-based system with loop-mediated isothermal amplification (LAMP) for the rapid and parallel detection of T. vaginalis, HPV16, HPV18, and HPV52 in a reagent-efficient and user-friendly manner. Compared to conventional LAMP assays in tubes, our system exhibits enhanced sensitivity with values of 2.43 × 101, 3.00 × 102, 3.57 × 101, and 3.60 × 102 copies per reaction for T. vaginalis, HPV16, HPV18, and HPV52, respectively. Additionally, we validated the performance of our chip by testing 47 clinical samples, yielding results consistent with the diagnostic methods used by the hospital. Therefore, our system not only offers a promising solution for concurrent diagnosis of T. vaginalis and HPV infections, particularly in resource-limited areas, due to its cost-effectiveness, ease of use, and rapid and accurate detection performance, but can also contribute to future research on the co-infection of these two pathogens. Moreover, the system possesses the capability to simultaneously detect up to 22 different types of pathogens, making it applicable across a wide range of domains such as diagnostics, food safety, and water monitoring.


Assuntos
Infecções por Papillomavirus , Trichomonas vaginalis , Neoplasias do Colo do Útero , Feminino , Humanos , Trichomonas vaginalis/genética , Papillomavirus Humano , Infecções por Papillomavirus/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Microfluídica , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Papillomavirus Humano 16 , Papillomavirus Humano 18/genética
10.
Sci Adv ; 9(30): eadh4310, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506214

RESUMO

Topological pumping allows waves to navigate a sample undisturbed by disorders and defects. We demonstrate this phenomenon with elastic surface waves by strategically patterning an elastic surface to create a synthetic dimension. The surface is decorated with arrays of resonating pillars that are connected by spatially slow-varying coupling bridges and support eigenmodes located below the sound cone. We establish a connection between the collective dynamics of the pillars and that of electrons in a magnetic field by developing a tight-binding model and a WKB (Wentzel-Kramers-Brillouin) analysis. This enables us to predict the topological pumping pattern, which we validate through numerical and experimental steering of waves from one edge to the other. Furthermore, we observe the immune nature of the topologically pumped surface waves to disorder and defects. The combination of surface patterning and WKB analysis provides a versatile platform for controlling surface waves and exploring topological matter in higher dimensions.

11.
Chem Eng J ; 4702023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37484781

RESUMO

Development of reversible wet or underwater adhesives remains a grand challenge. Because weakened intermolecular interactions by water molecules or/and low effective contact area cause poor interface to the wet surfaces, which significantly decreases adhesive strength. Herein, a new photocured, bio-based shape memory polymer (SMP) that shows both chemical and structural wet adhesion to various types of surfaces is developed. The SMP is polymerized from three monomers mainly from bio-sources to form linear polymer chains dangled with hydrophobic side chains. The hydrogen acceptor and donor groups in the chains form hydrogen bonding with the surfaces, which is protected by the hydrophobic chains in the interface. The SMP shows tunable phase transition temperature (Tg) of 17-38 °C. In a rubbery state above Tg, the adhesive forms conformable contact with the targeted surfaces. Below Tg, a transition to a glassy state locks the conformed shapes to largely increase the effective contact area. As a result, the adhesive exhibits long-term underwater adhesion of > 15 days with the best adhesion strength of ~ 0.9 MPa. Its applications in leak repair, underwater on-skin sensors were demonstrated. This new, general strategy would pave avenues to designing bio-based, long-lasting, and reversible adhesives from renewable feedstocks for widespread applications.

12.
Materials (Basel) ; 16(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37374616

RESUMO

Invar36 alloy is a low expansion alloy, and the triply periodic minimal surfaces (TPMS) structures have excellent lightweight, high energy absorption capacity and superior thermal and acoustic insulation properties. It is, however, difficult to manufacture by traditional processing methods. Laser powder bed fusion (LPBF) as a metal additive manufacturing technology, is extremely advantageous for forming complex lattice structures. In this study, five different TPMS cell structures, Gyroid (G), Diamond (D), Schwarz-P (P), Lidinoid (L), and Neovius (N) with Invar36 alloy as the material, were prepared using the LPBF process. The deformation behavior, mechanical properties, and energy absorption efficiency of these structures under different load directions were studied, and the effects and mechanisms of structure design, wall thickness, and load direction were further investigated. The results show that except for the P cell structure, which collapsed layer by layer, the other four TPMS cell structures all exhibited uniform plastic collapse. The G and D cell structures had excellent mechanical properties, and the energy absorption efficiency could reach more than 80%. In addition, it was found that the wall thickness could adjust the apparent density, relative platform stress, relative stiffness, energy absorption, energy absorption efficiency, and deformation behavior of the structure. Printed TPMS cell structures have better mechanical properties in the horizontal direction due to intrinsic printing process and structural design.

13.
Biosensors (Basel) ; 13(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37232920

RESUMO

Rapid identification of Candida species is significant for the diagnosis of vulvovaginal candidiasis (VVC). An integrated and multi-target system for the rapid, high-specificity, and high-sensitivity detection of four Candida species was developed. The system consists of a rapid sample processing cassette and a rapid nucleic acid analysis device. The cassette could process the Candida species to release nucleic acids in 15 min. The released nucleic acids were analyzed by the device as fast as within 30 min, using the loop-mediated isothermal amplification method. The four Candida species could be simultaneously identified, with each reaction using only 1.41 µL of reaction mixture, which was low cost. The RPT (rapid sample processing and testing) system could detect the four Candida species with high sensitivity (<2 CFU/reaction) and high specificity. The system also processed and analyzed 32 clinical samples, giving the results with high clinical sensitivity and specificity. Hence, the system was a significant and effective platform for the diagnosis of VVC. Furthermore, the period of validity of the reagents and chips used in the system was >90 days, and the system could also be used for the detection of bacteria.


Assuntos
Candidíase Vulvovaginal , Ácidos Nucleicos , Feminino , Humanos , Candidíase Vulvovaginal/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
14.
Proc Natl Acad Sci U S A ; 120(21): e2209829120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37200363

RESUMO

Solids built out of active components have exhibited odd elastic stiffness tensors whose active moduli appear in the antisymmetric part and which give rise to non-Hermitian static and dynamic phenomena. Here, we present a class of active metamaterial featured with an odd mass density tensor whose asymmetric part arises from active and nonconservative forces. The odd mass density is realized using metamaterials with inner resonators connected by asymmetric and programmable feed-forward control on acceleration and active forces along the two perpendicular directions. The active forces produce unbalanced off-diagonal mass density coupling terms, leading to non-Hermiticity. The odd mass is then experimentally validated through a one-dimensional nonsymmetric wave coupling where propagating transverse waves are coupled with longitudinal ones whereas the reverse is forbidden. We reveal that the two-dimensional active metamaterials with the odd mass can perform in either energy-unbroken or energy-broken phases separated by exceptional points along principal directions of the mass density. The odd mass density contributes to the wave anisotropy in the energy-unbroken phase and directional wave energy gain in the energy-broken phase. We also numerically illustrate and experimentally demonstrate the two-dimensional wave propagation phenomena that arise from the odd mass in active solids. Finally, the existence of non-Hermitian skin effect is discussed in which boundaries host an extensive number of localized modes. It is our hope that the emergent concept of the odd mass can open up a new research platform for mechanical non-Hermitian system and pave the ways for developing next-generation wave steering devices.

15.
J Affect Disord ; 332: 254-261, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031877

RESUMO

BACKGROUND: Non-medical use of prescription drugs (NMUPD) and their association with depression and anxiety are becoming global concerns. Biological sex may introduce differential exposure to NMUPD or depressive/anxiety symptoms. However, few studies have investigated the potential sex differences in the associations of NMUPD with depressive/anxiety symptoms. METHODS: Data were drawn from the 2019 School-based Chinese College Students Health Survey. A total of 30,039 undergraduates (mean age: 19.8 [SD: 1.3] years) from sixty universities/colleges in China completed standard questionnaires and were included in the study (response rate: 97.7 %). RESULTS: In the final adjusted model, non-medical use of opioids (experimenters: ß = 1.10, [95 % CI, 0.62 to 1.57]) or sedatives (frequent users: ß = 2.98, [95 % CI, 0.70 to 5.26]) was associated with depressive symptoms, while non-medical use of opioids (frequent users: ß = 1.37, [95 % CI, 0.32 to 2.42]) or sedatives (frequent users: ß = 1.19, [95 % CI, 0.35 to 2.03]) was also associated with anxiety symptoms. Sex-stratified analyses indicated that lifetime opioids misuse was associated with depressive symptoms in both sexes but with anxiety symptoms only in males (ß = 0.39, [95 % CI, 0.09 to 0.70]). The association of lifetime sedative misuse with depressive symptoms was greater in males, while the significant association with anxiety symptoms remained only in female (ß = 0.52, [95 % CI, 0.14 to 0.91]). LIMITATIONS: Causal inference cannot be made due to the cross-sectional nature of the data. CONCLUSIONS: Our study suggests NMUPD is associated with depressive and anxiety symptoms among Chinese undergraduates, and the associations may differ by sex.


Assuntos
Uso Indevido de Medicamentos sob Prescrição , Medicamentos sob Prescrição , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Caracteres Sexuais , Estudos Transversais , China/epidemiologia , Hipnóticos e Sedativos/efeitos adversos , Ansiedade/epidemiologia , Estudantes
16.
Theriogenology ; 205: 114-129, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120893

RESUMO

Under physiological and pathological conditions, melatonin (MEL) can regulate microRNA (miRNA) expression. However, the mechanisms underlying the regulatory effects of MEL on miRNAs in ovaries are not understood. Firstly, by using fluorescence in situ hybridisation, we found that in ovaries and follicular granulosa cells (FGCs), MT1 co-located with miR-21 and let-7b. Additionally, immunofluorescence revealed that MT1, STAT3, c-MYC and LIN28 proteins co-located. The mRNA and protein levels of STAT3, c-MYC and LIN28 increased under treatment with 10-7 M MEL. MEL induced an increase in miR-21 and a decrease in let-7b. The LIN28/let-7b and STAT3/miR-21 axes are related to cell differentiation, apoptosis and proliferation. We explored whether the STAT3/c-MYC/LIN28 pathway was involved in miRNA regulation by MEL to explore the putative mechanism of the above relationship. AG490, an inhibitor of the STAT3 pathway, was added before MEL treatment. AG490 inhibited the MEL-induced increases in STAT3, c-MYC, LIN28 and MT1 and changes in miRNA. Through live-cell detection, we discovered that MEL enhanced the proliferation of FGCs. However, the ki67 protein levels decreased when AG490 was added in advance. Furthermore, the dual-luciferase reporter assay verified that STAT3, LIN28 and MT1 were target genes of let-7b. Furthermore, STAT3 and SMAD7 were target genes of miR-21. In addition, the protein levels of the STAT3, c-MYC, LIN28 and MEL receptors decreased when let-7b was overexpressed in FGCs. Overall, MEL might regulate miRNA expression through the STAT3 pathway. In addition, a negative feedback loop between the STAT3 and miR-21 formed; MEL and let-7b antagonized each other in FGCs. These findings may provide a theoretical basis for improving the reproductive performance of Tibetan sheep through MEL and miRNAs.


Assuntos
Melatonina , MicroRNAs , Animais , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Ovinos/genética , Tirfostinas
17.
Nat Commun ; 14(1): 1266, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882441

RESUMO

In the field of flexible metamaterial design, harnessing zero modes plays a key part in enabling reconfigurable elastic properties of the metamaterial with unconventional characteristics. However, only quantitative enhancement of certain properties succeeds in most cases rather than qualitative transformation of the metamaterials' states or/and functionalities, due to the lack of systematic designs on the corresponding zero modes. Here, we propose a 3D metamaterial with engineered zero modes, and experimentally demonstrate its transformable static and dynamic properties. All seven types of extremal metamaterials ranging from null-mode (solid state) to hexa-mode (near-gaseous state) are reported to be reversibly transformed from one state to another, which is verified by the 3D-printed Thermoplastic Polyurethanes prototypes. Tunable wave manipulations are further investigated in 1D-, 2D- and 3D-systems. Our work sheds lights on the design of flexible mechanical metamaterials, which can be potentially extended from the mechanical to the electro-magnetite, the thermal or other types.

18.
J Magn Reson Imaging ; 58(5): 1603-1614, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36763035

RESUMO

BACKGROUND: Multiparametric MRI radiomics could distinguish human epidermal growth factor receptor 2 (HER2)-positive from HER2-negative breast cancers. However, its value for further distinguishing HER2-low from HER2-negative breast cancers has not been investigated. PURPOSE: To investigate whether multiparametric MRI-based radiomics can distinguish HER2-positive from HER2-negative breast cancers (task 1) and HER2-low from HER2-negative breast cancers (task 2). STUDY TYPE: Retrospective. POPULATION: Task 1: 310 operable breast cancer patients from center 1 (97 HER2-positive and 213 HER2-negative); task 2: 213 HER2-negative patients (108 HER2-low and 105 HER2-zero); 59 patients from center 2 (16 HER2-positive, 27 HER2-low and 16 HER2-zero) for external validation. FIELD STRENGTH/SEQUENCE: A 3.0 T/T1-weighted contrast-enhanced imaging (T1CE), diffusion-weighted imaging (DWI)-derived apparent diffusion coefficient (ADC). ASSESSMENT: Patients in center 1 were assigned to a training and internal validation cohort at a 2:1 ratio. Intratumoral and peritumoral features were extracted from T1CE and ADC. After dimensionality reduction, the radiomics signatures (RS) of two tasks were developed using features from T1CE (RS-T1CE), ADC (RS-ADC) alone and T1CE + ADC combination (RS-Com). STATISTICAL TESTS: Mann-Whitney U tests, the least absolute shrinkage and selection operator, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). RESULTS: For task 1, RS-ADC yielded higher area under the ROC curve (AUC) in the training, internal, and external validation of 0.767/0.725/0.746 than RS-T1CE (AUC = 0.733/0.674/0.641). For task 2, RS-T1CE yielded higher AUC of 0.765/0.755/0.678 than RS-ADC (AUC = 0.706/0.608/0.630). For both of task 1 and task 2, RS-Com achieved the best performance with AUC of 0.793/0.778/0.760 and 0.820/0.776/0.711, respectively, and obtained higher clinical benefit in DCA compared with RS-T1CE and RS-ADC. The calibration curves of all RS demonstrated a good fitness. DATA CONCLUSION: Multiparametric MRI radiomics could noninvasively and robustly distinguish HER2-positive from HER2-negative breast cancers and further distinguish HER2-low from HER2-negative breast cancers. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Receptor ErbB-2
19.
Diagnostics (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36832135

RESUMO

Lung cancer remains the most commonly diagnosed cancer and the leading cause of death from cancer. Recent research shows that the human eye can provide useful information about one's health status, but few studies have revealed that the eye's features are associated with the risk of cancer. The aims of this paper are to explore the association between scleral features and lung neoplasms and develop a non-invasive artificial intelligence (AI) method for detecting lung neoplasms based on scleral images. A novel instrument was specially developed to take the reflection-free scleral images. Then, various algorithms and different strategies were applied to find the most effective deep learning algorithm. Ultimately, the detection method based on scleral images and the multi-instance learning (MIL) model was developed to predict benign or malignant lung neoplasms. From March 2017 to January 2019, 3923 subjects were recruited for the experiment. Using the pathological diagnosis of bronchoscopy as the gold standard, 95 participants were enrolled to take scleral image screens, and 950 scleral images were fed to AI analysis. Our non-invasive AI method had an AUC of 0.897 ± 0.041(95% CI), a sensitivity of 0.836 ± 0.048 (95% CI), and a specificity of 0.828 ± 0.095 (95% CI) for distinguishing between benign and malignant lung nodules. This study suggested that scleral features such as blood vessels may be associated with lung cancer, and the non-invasive AI method based on scleral images can assist in lung neoplasm detection. This technique may hold promise for evaluating the risk of lung cancer in an asymptomatic population in areas with a shortage of medical resources and as a cost-effective adjunctive tool for LDCT screening at hospitals.

20.
Sci Adv ; 9(1): eadf0575, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608138

RESUMO

Liquid metal-elastomer composite is a promising soft conductor for skin-interfaced bioelectronics, soft robots, and others due to its large stretchability, ultrasoftness, high electrical conductivity, and mechanical-electrical decoupling. However, it often suffers from deformation-induced leakage, which can smear skin, deteriorate device performance, and cause circuit shorting. Besides, antimicrobial property is desirable in soft conductors to minimize microbial infections. Here, we report phase separation-based synthesis of porous liquid metal-elastomer composites with high leakage resistance and antimicrobial property, together with large stretchability, tissue-like compliance, high and stable electrical conductivity over deformation, high breathability, and magnetic resonance imaging compatibility. The porous structures can minimize leakage through damping effects and lower percolation thresholds to reduce liquid metal usage. In addition, epsilon polylysine is loaded into elastic matrices during phase separation to provide antimicrobial property. The enabled skin-interfaced bioelectronics can monitor cardiac electrical and mechanical activities and offer electrical stimulations in a mechanically imperceptible and electrically stable manner even during motions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...