Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Drug Chem Toxicol ; : 1-16, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726972

RESUMO

PBAT-modified starch blended film are thermoplastic biodegradable materials with good properties and a wide range of applications. In this study, L-02 cells were used as an in vitro toxicity evaluation system for risk assessment of PBAT-modified starch films with migration studies obtained in different food simulants. Determination of total migration and organic matter revealed that the results were in accordance with the standard except for the total organic matter under 95% (v/v) ethanol food simulant which exceeded the standard. The CCK-8 assay showed that these compounds affect the cell viability of L-02 cells. It was observed that the compounds made the cells express increased AST, ALT, TNF-α, IL-6, IL-1ß, and ROS, and decreased SOD, GSH, and ATP. In addition, we explored the effect of migration in PBAT-modified starch composites on protein and gene expression levels in L-02 cells using a transcriptomic approach and found that the AMPK signaling pathway was affected. The expression of AMPK signaling pathway-related proteins was detected by Western Blot, and the expression levels of p-AMPK/AMPK were found to be upregulated, and those of p-mTOR/mTOR, SIRT1, PGC-1α, NRF1 and TFAM were downregulated. The above data suggest that the compounds migrating into the PBAT-modified starch film when exposed to food may induce oxidative stress and inflammation in hepatocytes, and may cause damage to hepatocytes through the AMPK pathway.

2.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536233

RESUMO

The aetiological mechanisms of Fusobacterium nucleatum in laryngeal cancer remain unclear. This study aimed to reveal the epigenetic signature induced by F. nucleatum in laryngeal squamous cell carcinoma (LSCC). Combined analysis of methylome and transcriptome data was performed to address the functional role of F. nucleatum in laryngeal cancer. Twenty-nine differentially expressed methylation-driven genes were identified by mapping the methylation levels of significant differential methylation sites to the expression levels of related genes. The combined analysis revealed that F. nucleatum promoted Janus kinase 3 (JAK3) gene expression in LSCC. Further validation found decreased methylation and elevated expression of JAK3 in the F. nucleatum-treated LSCC cell group; F. nucleatum abundance and JAK3 gene expression had a positive correlation in tumour tissues. This analysis provides a novel understanding of the impact of F. nucleatum in the methylome and transcriptome of laryngeal cancer. Identification of these epigenetic regulatory mechanisms opens up new avenues for mechanistic studies to explore novel therapeutic strategies.


Assuntos
Epigenoma , Neoplasias Laríngeas , Humanos , Fusobacterium nucleatum , Epigênese Genética , Perfilação da Expressão Gênica
3.
Int J Neurosci ; : 1-8, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38512133

RESUMO

OBJECTIVE: This study focuses on exploring the efficacy observation, complications and nursing aspects of using enteral nutrition suspension in patients with acute ischemic stroke. METHODS: This study retrospectively analyzed clinical data from 188 patients with acute ischemic stroke treated in the Neurology Department of our hospital from October 2022 to September 2023. Patients who received intermittent enteral nutrition and nursing interventions were included in the control group (n=96), while patients who received continuous enteral nutrition and nursing interventions were included in the treatment group (n=92). Relevant indicators data changes before and after treatment were recorded for each patient, along with the occurrence of complications in both groups, and statistical analysis was conducted. RESULTS: The treatment group had fewer days in the ICU and total hospitalization days compared to the control group, with p < .05. Patients in the treatment group had higher levels of serum albumin and serum prealbumin than those in the control group, with p < .05. The occurrence of abdominal pain, diarrhea, constipation, bloating and acid reflux in the treatment group was lower than in the control group, with p < .05. There was no significant difference in the occurrence of adverse outcomes at discharge, death at discharge, cerebral hemorrhage, lung infection and gastrointestinal bleeding between the two groups (p > .05). CONCLUSION: The application of enteral nutrition suspension in patients with acute ischemic stroke effectively provides the necessary nutrients, maintains nutritional balance, promotes tissue repair and recovery and reduces the length of hospital stay.

4.
Comput Struct Biotechnol J ; 23: 396-405, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38235358

RESUMO

The exposure of ethanol increases the risk of head and neck inflammation and tumor progression. However, limited studies have investigated the composition and functionality of laryngeal microbiota under ethanol exposure. We established an ethanol-exposed mouse model to investigate the changes in composition and function of laryngeal microbiota using Metagenomic shotgun sequencing. In the middle and late stages of the experiment, the laryngeal microbiota of mice exposed to ethanol exhibited obvious distinguished from that of the control group on principal-coordinate analysis (PCoA) plots. Among the highly abundant species, Salmonella enterica and Mycobacterium marinum were likely to be most impacted. Our findings indicated that the exposure to ethanol significantly increased their abundance in larynxes in mice of the same age, which has been confirmed through FISH experiments. Among the species-related functions and genes, metabolism is most severely affected by ethanol. The difference was most obvious in the second month of the experiment, which may be alleviated later because the animal established tolerance. Notable enrichments concerning energy, amino acid, and carbohydrate metabolic pathways occurred during the second month under ethanol exposure. Finally, based on the correlation between species and functional variations, a network was established to investigate relationships among microbiota, functional pathways, and related genes affected by ethanol. Our data first demonstrated the continuous changes of abundance, function and their interrelationship of laryngeal microbiota under ethanol exposure by Metagenomic shotgun sequencing. Importance: Ethanol may participate in the inflammation and tumor progression by affecting the composition of the laryngeal microbiota. Here, we applied the metagenomic shotgun sequencing instead of 16 S rRNA sequencing method to identify the laryngeal microbiota under ethanol exposure. Salmonella enterica and Mycobacterium marinum are two dominant species that may play a role in the reconstruction of the laryngeal microenvironment, as their local abundance increases following exposure to ethanol. The metabolic function is most evidently impacted, and several potential metabolic pathways could be associated with alterations in microbiota composition. These findings could help us better understand the impact of prolonged ethanol exposure on the microbial composition and functionality in the larynx.

5.
Thorac Cancer ; 15(5): 427-433, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211967

RESUMO

INTRODUCTION: The prognosis of patients with advanced or metastatic sarcoma is very poor, and a new strategy for patients who fail systemic treatment is urgently required. Apatinib is a small molecule tyrosine kinase inhibitor of VEGFR-2, which can exert an antitumor effect by blocking downstream PI3K/AKT and VEGFR2/STAT3 signaling pathways of sarcoma. Dysregulation of the cyclin D (CCND)-cyclin-dependent kinase 4/6 (CDK4/6)-retinoblastoma 1 (Rb) pathway is highly prevalent in sarcoma. Thus, blocking VEGFR2 and CDK4/6 may exert a synergistic effect. We hypothesize that a combination of apatinib and dalpiciclib, an oral, highly effective, and selective small molecule CDK4/6 inhibitor, may result in higher antitumor efficacy in patients with refractory sarcoma. METHODS: In this open-label, single-arm, single-center phase I trial, participants diagnosed with sarcoma who failed standard systemic treatment will be enrolled. Dose escalation will be conducted into three groups according to traditional 3 + 3 principle: dose 1, dalpiciclib 100 mg once daily oral d1-21+ apatinib 250 mg once daily oral d1-28, every 28 days as one cycle; dose 2, dalpiciclib 100 mg d1-21+ apatinib 500 mg d1-28; dose 3, dalpiciclib 150 mg d-21+ apatinib 500 mg d1-28. The primary endpoint is the safety and tolerability of combined treatment. The secondary endpoint is to evaluate the initial efficacy, including objective response rate (ORR), disease control rate (DCR), duration of response (DoR), and progression-free survival (PFS). DISCUSSION: This trial will provide evidence of the tolerability, safety, and efficacy of dalpiciclib in combination with apatinib in metastatic sarcoma patients who have failed first-line systemic treatment.


Assuntos
Antineoplásicos , Piperidinas , Piridinas , Pirimidinas , Sarcoma , Humanos , Antineoplásicos/uso terapêutico , Fosfatidilinositol 3-Quinases , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Ensaios Clínicos Fase I como Assunto
6.
Front Genet ; 14: 1266990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046047

RESUMO

Introduction: Metagenomic next-generation sequencing (mNGS) has emerged as a powerful tool for rapid pathogen identification in clinical practice. However, the parameters used to interpret mNGS data, such as read count, genus rank, and coverage, lack explicit performance evaluation. In this study, the developed indicators as well as novel parameters were assessed for their performance in bacterium detection. Methods: We developed several relevant parameters, including 10M normalized reads, double-discard reads, Genus Rank Ratio, King Genus Rank Ratio, Genus Rank Ratio*Genus Rank, and King Genus Rank Ratio*Genus Rank. These parameters, together with frequently used read indicators including raw reads, reads per million mapped reads (RPM), transcript per kilobase per million mapped reads (TPM), Genus Rank, and coverage were analyzed for their diagnostic efficiency in bronchoalveolar lavage fluid (BALF), a common source for detecting eight bacterium pathogens: Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, Staphylococcus aureus, Hemophilus influenzae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, and Aspergillus fumigatus. Results: The results demonstrated that these indicators exhibited good diagnostic efficacy for the eight pathogens. The AUC values of all indicators were almost greater than 0.9, and the corresponding sensitivity and specificity values were almost greater than 0.8, excepted coverage. The negative predictive value of all indicators was greater than 0.9. The results showed that the use of double-discarded reads, Genus Rank Ratio*Genus Rank, and King Genus Rank Ratio*Genus Rank exhibited better diagnostic efficiency than that of raw reads, RPM, TPM, and in Genus Rank. These parameters can serve as a reference for interpreting mNGS data of BALF. Moreover, precision filters integrating our novel parameters were built to detect the eight bacterium pathogens in BALF samples through machine learning. Summary: In this study, we developed a set of novel parameters for pathogen identification in clinical mNGS based on reads and ranking. These parameters were found to be more effective in diagnosing pathogens than traditional approaches. The findings provide valuable insights for improving the interpretation of mNGS reports in clinical settings, specifically in BALF analysis.

7.
BMC Cancer ; 23(1): 990, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848855

RESUMO

BACKGROUND: To investigate how Fusobacterium nucleatum (Fn) promotes oxidative stress and mediates proliferation and autophagy in hypopharyngeal squamous cell carcinoma (HPSCC). METHODS: The prognosis for 82 HPSCC cases was retrospectively analyzed. HPSCC cell line FaDu was co-cultured with Fn. Knockdown of NUDT1 (shNUDT1 group) was done after observing DNA damage response. CCK8 and tumorigenesis assays for proliferation observation, mitochondria ROS (MitoROS) measurement to examine intracellular oxidative stress, and ELISA to analyze concentration of 8-oxo-2'-deoxyguanosine (8-oxo-dG) in cells. Dual-luciferase reporter assays clarified miR-361-3p connection with NUDT1. Autophagy flow was observed using electron microscopy and related proteins. RESULTS: Fn was highly associated with NUDT1. The shNUDT1 group experienced lower proliferation compared with normal FaDu (NC group) in vivo and in vitro. The shNUDT1 group showed 8-oxo-dG and γH2AX to be elevated. Intracellular ROS decreased in shNUDT1Fn group when compared to Fn group. Upregulating miR-361-3p could suppress NUDT1 expression and downstream proliferation and autophagy. Fn modulated miR-361-3p via OH-, which could be proven by H2O2 assay and N-acetylcysteine. CONCLUSIONS: Higher Fn in HPSCC patients suggests poorer prognosis. NUDT1 might affect cell proliferation and autophagy and modulate DNA damage response. The oxidative stress induced miR-361-3p/NUDT1 axis is first introduced in microbiome-carcinoma research.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fusobacterium nucleatum/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estudos Retrospectivos , Linhagem Celular Tumoral , Proliferação de Células/genética , Estresse Oxidativo/genética , Neoplasias de Cabeça e Pescoço/genética , Autofagia/genética , Regulação Neoplásica da Expressão Gênica
8.
Elife ; 122023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902629

RESUMO

Accumulating evidence indicates that acetate is increased under energy stress conditions such as those that occur in diabetes mellitus and prolonged starvation. However, how and where acetate is produced and the nature of its biological significance are largely unknown. We observed overproduction of acetate to concentrations comparable to those of ketone bodies in patients and mice with diabetes or starvation. Mechanistically, ACOT12 and ACOT8 are dramatically upregulated in the liver to convert free fatty acid-derived acetyl-CoA to acetate and CoA. This conversion not only provides a large amount of acetate, which preferentially fuels the brain rather than muscle, but also recycles CoA, which is required for sustained fatty acid oxidation and ketogenesis. We suggest that acetate is an emerging novel 'ketone body' that may be used as a parameter to evaluate the progression of energy stress.


Assuntos
Fígado , Inanição , Humanos , Animais , Camundongos , Acetilcoenzima A , Acetatos , Encéfalo , Ácidos Graxos não Esterificados , Corpos Cetônicos , Tioléster Hidrolases
9.
Nat Commun ; 14(1): 6360, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821429

RESUMO

The multi-subunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is required for autophagosome-lysosome fusion in mammals, yet reconstituting the mammalian HOPS complex remains a challenge. Here we propose a "hook-up" model for mammalian HOPS complex assembly, which requires two HOPS sub-complexes docking on membranes via membrane-associated Rabs. We identify Rab39A as a key small GTPase that recruits HOPS onto autophagic vesicles. Proper pairing with Rab2 and Rab39A enables HOPS complex assembly between proteoliposomes for its tethering function, facilitating efficient membrane fusion. GTP loading of Rab39A is important for the recruitment of HOPS to autophagic membranes. Activation of Rab39A is catalyzed by C9orf72, a guanine exchange factor associated with amyotrophic lateral sclerosis and familial frontotemporal dementia. Constitutive activation of Rab39A can rescue autophagy defects caused by C9orf72 depletion. These results therefore reveal a crucial role for the C9orf72-Rab39A-HOPS axis in autophagosome-lysosome fusion.


Assuntos
Fusão de Membrana , Animais , Autofagia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Catálise , Guanosina Trifosfato/metabolismo , Mamíferos/metabolismo , Fusão de Membrana/fisiologia , Vacúolos/metabolismo
10.
Pak J Med Sci ; 39(5): 1291-1295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680818

RESUMO

Objectives: To investigate the efficacy of intravenous thrombolysis (IVT) combined with endovascular treatment (EVT) on vascular recanalization rate and peak systolic velocity (PSV) in patients with acute cerebral infarction (ACI). Methods: A retrospective observational study was conducted from January 2019 to December 2021 in Chengdu First People's Hospital. The clinical data of 96 patients with ACI were reviewed and the patients were assigned to either the control group (IVT alone, n=54) or the observation group (IVT+EVT, n=42). The vascular recanalization rate, PSV, neurological function, modified Rankin Scale (mRS) score and major adverse cardiovascular events (MACE) were compared between groups. Results: The vascular recanalization rate and PSV in the observation group were higher than the control group (P<0.05). The NIHSS scores of the observation group at 24 hour, one week and one month after treatment were significantly lower than those of the control group (P<0.05). The mRS scores of the observation group were significantly lower than the control group after treatment (P<0.05), while there was no difference in the incidence of MACE between groups (P>0.05). Conclusions: IVT combined with EVT can improve the vascular recanalization rate and PSV in patients with ACI, which is worthy of promotion in clinical practice.

11.
J Pharm Biomed Anal ; 235: 115632, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37573622

RESUMO

In this study, a novel genotyping point-of-care testing (POCT) rapid detection device, the locked nucleic acid (LNA)-amplification refractory mutation system (ARMS)-recombinase polymerase amplification (RPA)-GoldMag lateral flow assay (LFA) platform, was provided by mining and synthesis based on prior technology. Research methods based on system-integrated innovation and knowledge-integrated generation have become a new trend in technology development. Here, we exploit the combination of LNA-coupled ARMS-RPA and gold nanoparticle probe technology for detection signal amplification, thus pioneering a new tool for accurate, rapid, and cost-effective genotyping. We also performed SNP typing detection and clinical validation of this new assay platform using common glucose-6-phosphate dehydrogenase (G6PD) gene single nucleotide polymorphism (SNP) loci, and the results demonstrated the high sensitivity, specificity, stability, accuracy and feasibility of the LNA-ARMS-RPA-GoldMag lateral flow assay platform. It is hoped that this new technology will make a significant contribution to the field of POCT rapid diagnosis and aim to expand the application space, reflecting its clinical application value and development prospects.


Assuntos
Nanopartículas Metálicas , Recombinases , Recombinases/genética , Ouro , Sensibilidade e Especificidade , Testes Imediatos , Mutação
12.
Nanomicro Lett ; 15(1): 195, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561290

RESUMO

Niobium pentoxide (Nb2O5) anodes have gained increasing attentions for high-power lithium-ion batteries owing to the outstanding rate capability and high safety. However, Nb2O5 anode suffers poor cycle stability even after modified and the unrevealed mechanisms have restricted the practical applications. Herein, the over-reduction of Nb5+ has been demonstrated to be the critical reason for the capacity loss for the first time. Besides, an effective competitive redox strategy has been developed to solve the rapid capacity decay of Nb2O5, which can be achieved by the incorporation of vanadium to form a new rutile VNbO4 anode. The highly reversible V3+/V2+ redox couple in VNbO4 can effectively inhibit the over-reduction of Nb5+. Besides, the electron migration from V3+ to Nb5+ can greatly increase the intrinsic electronic conductivity for VNbO4. As a result, VNbO4 anode delivers a high capacity of 206.1 mAh g-1 at 0.1 A g-1, as well as remarkable cycle performance with a retention of 93.4% after 2000 cycles at 1.0 A g-1. In addition, the assembled lithium-ion capacitor demonstrates a high energy density of 44 Wh kg-1 at 5.8 kW kg-1. In summary, our work provides a new insight into the design of ultra-fast and durable anodes.

13.
Discov Oncol ; 14(1): 120, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37393565

RESUMO

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) is a vital pro-oncogenic bacterium. Our previous study revealed that a high abundance of F. nucleatum in head and neck squamous cell carcinoma (HNSCC) is correlated with poor patient prognosis. However, the impact of F. nucleatum on metabolic reprogramming and tumor progression in HNSCC awaits more exploration. METHODS: Liquid chromatography‒mass spectrometry (LC‒MS) was applied to analyze the altered metabolites in a head and neck carcinoma cell line (AMC-HN-8) after coculture with F. nucleatum for 24 hrs and 48 hrs. Both univariate and multivariate analyses were used to screen for differential metabolites. Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway enrichment analysis was further used to explore the metabolic changes. RESULTS: We observed a significantly altered metabolic profile in AMC-HN-8 cells over time after coculture with F. nucleatum. Among the several enriched pathways, the purine metabolic pathway was the most significantly enriched (P = 0.0005), with downregulation of purine degradation. Furthermore, uric acid, the end product of purine metabolism, significantly reversed F. nucleatum-triggered tumor progression and altered the intracellular reactive oxygen species (ROS) level. Moreover, the negative correlation between the serum uric acid level and the abundance of F. nucleatum was verified in 113 HNSCC patients (P = 0.0412, R = - 0.1924). CONCLUSIONS: Our study revealed obviously aberrant purine metabolism driven by F. nucleatum in HNSCC, which was closely related to tumor progression and patient prognosis. These findings indicate the possibility of targeting F. nucleatum-induced purine metabolism reprogramming in the future treatment of HNSCC.

14.
ACS Infect Dis ; 9(8): 1534-1545, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493514

RESUMO

Microscopic examination of thick and thin blood smears stained with Giemsa dye is considered the primary diagnostic tool for the confirmation and management of suspected clinical malaria. However, detecting gametocytes is relatively insensitive, particularly in asymptomatic individuals with low-density Plasmodium infections. To complement existing diagnostic methods, a rapid and ultrasensitive point-of-care testing (POCT) platform for malaria detection is urgently needed and necessary. A platform based on recombinase polymerase amplification (RPA) followed by CRISPR/Cas12a (referred to as RPA-CRISPR/Cas12a) was developed and optimized for the determination of Plasmodium spp. parasites, particularly Plasmodium falciparum, using a fluorescence-based assay (FBDA), lateral flow test strips (LFTS), or naked eye observation (NEO). Then, the established platform was assessed with clinical malaria isolates. Under optimal conditions, the detection threshold was 1 copy/µL for the plasmid, and the limit of detection was 3.11-7.27 parasites/µL for dried blood spots. There was no cross-reactivity against blood-borne pathogens. For the accuracies of RPA-CRISPR/Cas12a, Plasmodium spp. and P. falciparum testing were 98.68 and 94.74%, respectively. The method was consistent with nested PCR results and superior to the qPCR results. RPA-CRISPR/Cas12a is a rapid, ultrasensitive, and reliable platform for malaria diagnosis. The platform requires no or minimal instrumentation for nucleic acid amplification reactions and can be read with the naked eye. Compared with similar diagnostic methods, this platform improves the reaction speed while reducing detection requirements. Therefore, this platform has the potential to become a true POCT for malaria parasites.

15.
Food Chem Toxicol ; 178: 113878, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295765

RESUMO

Nonylphenol (NP) exposure can trigger neurotoxicity and cause learning and memory impairment. Nicotinamide mononucleotide (NMN) has a therapeutic effect on neurodegenerative diseases, but the role of NMN on NP-induced learning and memory impairment is not known. Here, we examined the mitigative effect of NMN on the impaired learning and memory ability of rats exposed to NP. The NP impaired learning and memory in rats, while the low-dose intervention with NMN significantly prolonged the step-through latency of the PAT and improved the NAMPT and NMNAT1 content in brain tissue. At the same time, the NMN intervention also increased the content of 5-HTR1A, 5-HTR4, and 5-HTR6 related to learning and memory in the hippocampus. In line with this, we found that the NMN intervention activated the SIRT1/MAO-A pathway in brain tissue. NMN intervention, especially at 125 mg/kg doses, may improve rats' NP-induced learning and memory impairment via the central 5-HT system and the NAD+/SIRT1/MAO-A pathway in the brain.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Ratos , Animais , NAD/metabolismo , Serotonina , Sirtuína 1/genética , Sirtuína 1/metabolismo , Monoaminoxidase
16.
Sci Total Environ ; 891: 164530, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37268145

RESUMO

The improvement and utilization of saline soil is an important guarantee for cultivating healthy soil, ensuring global food security, and mitigating the negative impacts of climate change. Organic material addition plays a crucial role in soil improvement and remediation, soil carbon sequestration, and improving soil fertilizer and productivity. In order to explore the comprehensive impact of organic material addition on properties of saline soil (including the physical and chemical properties, nutrient fixation, crop yield, and carbon sink capacity), we conducted a global meta-analysis using data from 141 articles. We found that, soil salinization significantly reduced plant biomass (50.1 %), soil organic carbon (20.6 %), and microbial biomass carbon (36.5 %). Meanwhile, it also reduced CO2 flux (25.8 %) and CH4 flux (90.2 %) significantly. Adding organic materials to saline soil significantly increased crop yield (30.4 %), plant biomass (30.1 %), soil organic carbon (62.2 %), and microbial biomass carbon (78.2 %), but also increased CO2 flux (221.9 %) and CH4 flux (29.7 %). Considering the balance of both carbon sequestration and carbon emissions, organic material addition significantly increased the net carbon sequestration by about 5890.7 kg CO2-eq·hm-2·100 d-1 on average. Besides, the organic material addition reduced soil salinity, exchangeable sodium, and pH, and increased >0.25 mm aggregates and soil fertility. Our findings suggest that organic material addition can improve both carbon sequestration in saline soil and crop yield. Considering the huge area of saline soil around the world, this understanding is essential to reduce the saline obstacle, improve the soil carbon sink capacity, ensure food security, and increase farmland reserves.


Assuntos
Sequestro de Carbono , Solo , Solo/química , Agricultura , Carbono/análise , Dióxido de Carbono/análise
17.
Int J Biol Macromol ; 242(Pt 4): 124967, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217047

RESUMO

In this study, decolorized pectic polysaccharides (D-ACLP) with molecular weight (Mw) distribution of 3483- 2,023,656 Da were prepared from Amaranth caudatus leaves. Purified polysaccharides (P-ACLP) with the Mw of 152,955 Da were further isolated from D-ACLP through gel filtration. The structure of P-ACLP was analyzed by 1D and 2D NMR spectra. P-ACLP were identified as rhamnogalacturonan-I (RG-I) containing dimeric arabinose side chains. The main chain of P-ACLP was composed of →4)-α-GalpA-(1→, →2)-ß-Rhap-(1→, →3)-ß-Galp-(1→ and →6)-ß-Galp-(1→. There was a branched chain of α-Araf-(1→2)-α-Araf-(1→ connected to the O-6 position of →3)-ß-Galp-(1→. The GalpA residues were partially methyl esterified at O-6 and acetylated at O-3. The 28-day consecutive gavage of D-ALCP (400 mg/kg) significantly elevated the hippocampal glucagon-like peptide-1 (GLP-1) levels in rats. The concentrations of butyric acid and total short chain fatty acids in the cecum contents also increased significantly. Moreover, D-ACLP could significantly increase the gut microbiota diversity and dramatically up-regulated the abundance of Actinobacteriota (phylum) and unclassified Oscillospiraceae (genus) in intestinal bacteria. Taking together, D-ACLP might promote the hippocampal GLP-1 level through the beneficial regulation of butyric acid-producing bacteria in gut microbiota. This study contributed to making full use of Amaranth caudatus leaves for cognitive dysfunction intervention in food industry.


Assuntos
Núcleo Caudado , Polissacarídeos , Animais , Ratos , Polissacarídeos/química , Pectinas/química , Espectroscopia de Ressonância Magnética , Folhas de Planta
18.
Nutrients ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111044

RESUMO

Sales of plant-based 'meat' and 'milk'-products that mimic the visual and functional characteristics of animal-source foods-have increased rapidly during the past decade and are predicted to continue to increase. As plant-based 'meat' and 'milk' are nutritionally dissimilar to the animal-source originals, this study aimed to estimate the nutritional implications for the Australian population of substituting 'Easily Swappable' animal-source meat and dairy milk with plant-based imitation products. Computer simulation modelling was undertaken using dietary intake data collected in 2011-12 from a nationally representative survey sample. Conservative and Accelerated dietary transition scenarios were modelled in which various amounts of dairy milk and animal-source meat were replaced with plant-based 'milk' and plant-based 'meat', for the entire population and for various sub-populations. The scenarios were based on sales reports and economic projections. Modelling revealed that the intake of nutrients already at risk of inadequate intake, such as iodine and vitamin B12 (particularly for females), zinc (particularly for males) and n-3 long-chain fatty acids (for adults), would likely be adversely impacted in an Accelerated scenario. In conclusion, widespread replacement of dairy milk and animal-source meat with plant-based 'milk' and 'meat' may increase the risk of nutritional inadequacies in the Australian population. Messages and policy actions promoting the transition to more environmentally sustainable diets should be designed to avoid such adverse nutritional impacts.


Assuntos
Dieta , Leite , Masculino , Animais , Feminino , Simulação por Computador , Austrália , Carne
19.
J Hazard Mater ; 454: 131466, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37099909

RESUMO

Environmentally persistent free radicals (EPFRs) in PM2.5 can pose significant health risks by generating reactive oxygen species (ROS). In this study, Beijing and Yuncheng were chosen as two representative northern cities of China that mainly relied on natural gas and coal respectively as the energy source for domestic heating in winter. The pollution characteristics and exposure risks of EPFRs in PM2.5 around the heating season of 2020 were investigated and compared between the two cities. Through laboratory simulation experiments, the decay kinetics and secondary formation of EPFRs in PM2.5 collected in both cities were also studied. EPFRs in PM2.5 collected in Yuncheng in the heating period showed longer lifetime and lower reactivity, suggesting that EPFRs originated from coal combustion were more stable in the atmosphere. However, the generation rate of hydroxyl radical (·OH) by the newly formed EPFRs in PM2.5 in Beijing under ambient conditions was 4.4 times of that in Yuncheng, suggesting higher oxidative potential of EPFRs from the atmospheric secondary processes. Accordingly, the control strategies of EPFRs and their health risks were raised for the two cities, which would also have direct implication for the control of EPFRs in other areas of similar atmospheric emission and reaction patterns.

20.
Eye (Lond) ; 37(15): 3180-3185, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36894762

RESUMO

BACKGROUND: Herpes simplex keratitis (HSK) is the most common but serious infectious keratitis with high recurrence. It is predominantly caused by herpes simplex virus type 1 (HSV-1). The spread mechanism of HSV-1 in HSK is not entirely clear. Multiple publications indicate that exosomes participate in the intercellular communication process during viral infections. However, there is rare evidence that HSV-1 spreads in HSK by exosomal pathway. This study aims to investigate the relationship between the spread of HSV-1 and tear exosomes in recurrent HSK. METHODS: Tear fluids collected from total 59 participants were included in this study. Tear exosomes were isolated by ultracentrifugation, then identified by silver staining and western blot. The size was determined by dynamic light scattering (DLS). The viral biomarkers were identified by western blot. The cellular uptake of exosomes was studied using labelled exosomes. RESULTS: Tear exosomes were indeed enriched in tear fluids. Collected exosomes own normal diameters consistent with related reports. The exosomal biomarkers existed in tear exosomes. Labelled exosomes were successfully taken up by human corneal epithelial cells (HCEC) in large numbers in a short time. After cellular uptake, HSK biomarkers were detectable by western blot in infected cells. CONCLUSIONS: Tear exosomes should be the latent sites of HSV-1 in recurrent HSK and might be involved in the spread of HSV-1. Besides, this study verifies HSV-1 genes can be indeed transferred between cells by exosomal pathway, providing new inspiration for the clinical intervention and treatment as well as the drug discovery of recurrent HSK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...