Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(3): 2264-2274, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33443243

RESUMO

Rare earth equiatomic quaternary Heusler (EQH) compounds with chemical formula RXVZ (R = Yb, Lu; X = Fe, Co, Ni; Z = Al, Si) have recently attracted much attention since these materials are easily prepared and they also provide interesting properties for future spintronic applications. In this work, rare Earth-based EQH compounds in three types of structures are theoretically investigated through first-principles calculations based on density functional theory. We find that most of the studied rare Earth EQH compounds exhibit magnetic ground states including ferro-, antiferro-, and ferri-magnetic phases. Owing to the nearly closed shell f orbital in Lu and Yb, the spin magnetic moments mainly come from the 3d transition metal elements. In particular, in the type I structure, a large portion (7 out of 12) of EQH compounds are ferromagnetic half-metals (HMs) with integer magnetic moments ranging from 1 to 3 µB. In the type II structure, YbFeVAl is found to be a rare case of antiferro-magnetic (AFM) half-metal with zero total magnetic moments. Surprisingly, we also discover an unusual magnetic semiconductor LuCoVSi in the type III structure with a total spin magnetic moment of 3.0 µB and an indirect band gap of 0.2 eV. The structural and magnetic stabilities such as formation energy, magnetization energy as well as the mechanical stabilities such as the bulk, shear, and Young's moduli, and Poisson's, and Pugh's ratios of these EQH compounds are also investigated. Most of the studied compounds exhibit mechanical stability under the mechanical stability criteria and show elastic anisotropy. Our work provides guidelines for experimental researchers to synthesize useful materials in future spintronic applications.

2.
Sci Rep ; 10(1): 7089, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341446

RESUMO

Local density approximation plus on-site Coulomb interaction U electronic structure calculations reveal that layered perovskite oxide Sr2RuO4 exhibits the ferromagnetic (FM) half-metallic ground state, which is nearly degenerate with the antiferromagnetic (AFM) phase with a slightly higher total energy. The nearly degenerate FM/AFM total energies provide a reasonable explanation for the experimentally observed spin-fluctuation. In addition, a dumbbell-shape 4d - t2g recombined dxz - dyz orbital ordering on the Ru sublattice is obtained owing to the on-site Coulomb interaction U associated with the elongated RuO6 octahedron local structure. The discovered orbital ordering is robust against the spin-orbit interaction as well as the surface terminations. Our findings unravel the on-site Coulomb correlation as the driving force of the Ru-4d orbital ordering as well as the inherent magnetic degeneracy.

3.
Appl Opt ; 44(26): 5512-23, 2005 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-16161667

RESUMO

The single-scattering properties of ice particles in the near- through far-infrared spectral region are computed from a composite method that is based on a combination of the finite-difference time-domain technique, the T-matrix method, an improved geometrical-optics method, and Lorenz-Mie theory. Seven nonspherical ice crystal habits (aggregates, hexagonal solid and hollow columns, hexagonal plates, bullet rosettes, spheroids, and droxtals) are considered. A database of the single-scattering properties for each of these ice particles has been developed at 49 wavelengths between 3 and 100 microm and for particle sizes ranging from 2 to 10,000 microm specified in terms of the particle maximum dimension. The spectral variations of the single-scattering properties are discussed, as well as their dependence on the particle maximum dimension and effective particle size. The comparisons show that the assumption of spherical ice particles in the near-IR through far-IR region is generally not optimal for radiative transfer computation. Furthermore, a parameterization of the bulk optical properties is developed for mid-latitude cirrus clouds based on a set of 21 particle size distributions obtained from various field campaigns.

4.
Appl Opt ; 42(15): 2653-64, 2003 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12777000

RESUMO

We investigate the errors associated with the use of circular cylinders as surrogates for hexagonal columns in computing the optical properties of pristine ice crystals at infrared (8-12-microm) wavelengths. The equivalent circular cylinders are specified in terms of volume (V), projected area (A), and volume-to-area ratio that are equal to those of the hexagonal columns. We use the T-matrix method to compute the optical properties of the equivalent circular cylinders. We apply the finite-difference time-domain method to compute the optical properties of hexagonal ice columns smaller than 40 microm. For hexagonal columns larger than 40 microm we employ an improved geometric optics method and a stretched scattering potential technique developed in previous studies to calculate the phase function and the extinction (or absorption) efficiency, respectively. The differences between the results for circular cylinders and hexagonal columns are of the order of a few percent. Thus it is quite reasonable to use a circular cylinder geometry as a surrogate for pristine hexagonal ice columns for scattering calculations at infrared (8-12-microm) wavelengths. Although the pristine ice crystals can be approximated as circular cylinders in scattering calculations at infrared wavelengths, it is shown that optical properties of individual aggregates cannot be well approximated by those of individual finite columns or cylinders.

5.
Appl Opt ; 41(21): 4209-19, 2002 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-12148748

RESUMO

Determining the Jacobians of the radiative transfer equation (RTE) is important to the qualities of the simultaneous retrieval of geophysical parameters from satellite radiance observations and the assimilation of radiance data into a numerical weather prediction system. Two linear forms of the RTE with analytic Jacobians are formulated. The first linear form has approximate analytic Jacobians, which involves some monochromatic approximation applied to a fast transmittance model. Unlike previous research, which lacks the transmittance Jacobian with respect to the atmospheric temperature profile, this form is complete in the sense that the transmittance Jacobians with respect to atmospheric temperature and absorbing constituent profiles are both present. The second linear form has exact analytic Jacobians derived consistently from the same fast transmittance model without using any monochromatic approximation. By numerical comparison between the two linear forms for the NOAA-12 High-Resolution Infrared Sounder, we show significant errors in the linear form with approximate analytic Jacobians. The relative absolute linearization error from the linear form with approximate analytic Jacobians is shown to be 2-4 orders of magnitude larger than that from the linear form with exact analytic Jacobians, even for the case of a 0.1% perturbation of the U.S. Standard Atmosphere. The errors unnecessarily complicate the ill-posed retrieval problem of atmospheric remote sensing and can be avoided if the correct linear form of the RTE with exact analytic Jacobians is adopted.

6.
Appl Opt ; 41(20): 4057-69, 2002 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-12141504

RESUMO

A nonlinear sounding retrieval algorithm is used to produce vertical-temperature and water-vapor profiles from coincident observations taken by the airborne High-resolution Interferometer Sounder (HIS) and the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the SUbsonic Contrails and Clouds Effects Special Study (SUCCESS). Also, clear sky Geostationary Operational Environmental Satellite (GOES) and AERI radiance measurements, achieved on a daily real-time basis at the Department of Energy's Oklahoma CART (Cloud and Radiation Testbed) site, are used to demonstrate the current profiling capability by use of simultaneous geostationary satellite and ground-based remote sensing observations under clear-sky conditions. The discrepancy principle, a method to find the proper smoothing parameters from the minimum value between the normalized spectral residual norm and the a priori upper bound, is used to demonstrate the feasibility and effectiveness of on-line simultaneous tuning of the multiple weighting and smoothing parameters from the combined satellite/airborne and ground-based measurements for the temperature and water-vapor retrieval in this nonlinear-retrieval process. An objective method to determine the degrees of freedom (d.f.) of the observation signal is derived. The d.f. of the radiance signal for the combined GOES and AERI measurements is larger than that for either instrument alone; while the d.f. of the observation signal for the combined GOES and AERI measurements is larger than that for either instrument alone and of the combined GOES and AERI measurements. The use of simultaneous clear-sky AERI and GOES data now provides improved vertical temperature and moisture soundings on an hourly basis for use in the Atmospheric Radiation Measurement program [J. Appl. Meteorol. 37, 875 (1998)].

7.
Appl Opt ; 41(15): 2740-59, 2002 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12027161

RESUMO

The conventional Lorenz-Mie formalism is extended to the case for a coated sphere embedded in an absorbing medium. The apparent and inherent scattering cross sections of a particle, derived from the far field and near field, respectively, are different if the host medium is absorptive. The effect of absorption within the host medium on the phase-matrix elements associated with polarization depends on the dielectric properties of the scattering particle. For the specific cases of a soot particle coated with a water layer and an ice sphere containing an air bubble, the phase-matrix elements -P12/P11 and P33/P11 are unique if the shell is thin. The radiative transfer equation for a multidisperse particle system embedded within an absorbing medium is discussed. Conventional multiple-scattering computational algorithms can be applied if scaled apparent single-scattering properties are applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...