Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1140160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153456

RESUMO

Background: Arterial stiffness is a significant determinant and evaluation of cardio-cerebrovascular disease and all-cause mortality risk in the stroke population. Estimated pulse wave velocity (ePWV) is a well-established indirect measure of arterial stiffness. We examined the association of ePWV with all-cause and cardio-cerebrovascular disease (CCD) mortality in the stroke population in a large sample of US adults. Methods: The study design was a prospective cohort study with data from the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2014, between the ages of 18-85 years, with follow-up through December 31, 2019. 1,316 individuals with stroke among 58,759 participants were identified and ultimately, 879 stroke patients were included in the analysis. ePWV was calculated from a regression equation using age and mean blood pressure according to the following formula: ePWV = 9.587 - (0.402 × age) + [4.560 × 0.001 × (age2)] - [2.621 × 0.00001 × (age2) × MBP] + (3.176 × 0.001 × age × MBP) - (1.832 × 0.01 × MBP). Survey-weighted Cox regression models were used to assess the association between ePWV and all-cause and CCD mortality risk. Results: The high ePWV level group had a higher increased risk of all-cause mortality and CCD mortality compared to the low ePWV level group after fully adjusting for covariates. With an increase in ePWV of 1 m/s, the risk of all-cause and CCD mortality increased by 44%-57% and 47%-72% respectively. ePWV levels were linearly correlated with the risk of all-cause mortality (P for nonlinear = 0.187). With each 1 m/s increase in ePWV, the risk of all-cause mortality increased by 44% (HR 1.44, 95% CI: 1.22-1.69; P < 0.001). When ePWV was <12.1 m/s, an increase in ePWV per 1 m/s was associated with a 119% (HR 2.19, 95% CI: 1.43-3.36; P < 0.001) increase in CCD mortality risk; when ePWV was ≥12.1 m/s, an increase in ePWV per 1 m/s was not associated with in CCD mortality risk. Conclusion: ePWV is an independent risk factor for all-cause and CCD mortality in stroke patients. Higher levels of ePWV are associated with higher all-cause mortality and CCD mortality in stroke patients.

2.
J Med Chem ; 64(13): 9458-9483, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34152138

RESUMO

Management of moderate to severe pain relies heavily on opioid analgesics such as morphine, oxycodone, and fentanyl in clinics. However, their prolonged use was associated with undesirable side effects. Many new strategies to reduce side effects have been proposed, but not without disadvantages. Using a hot plate model as a phenotypic screening method, our studies identified (3R,4S)-9d with a new scaffold as a potent analgesic with ED50 values of 0.54 mg/kg and 0.021 mg/kg in hot plate and antiwrithing models, respectively. Mechanistic studies showed that it elicited its analgesic effect via the active metabolite (3R,4S)-10a. The mechanism of (3R,4S)-10a-induced activation of the µ opioid receptor (MOR) was proposed by means of molecular dynamics (MD) simulation.


Assuntos
Analgésicos Opioides/farmacologia , Descoberta de Drogas , Dor/tratamento farmacológico , Receptores Opioides mu/metabolismo , Ácido Acético , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/química , Animais , Relação Dose-Resposta a Droga , Feminino , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Moleculares , Estrutura Molecular , Dor/induzido quimicamente , Relação Estrutura-Atividade
3.
ACS Chem Neurosci ; 12(2): 285-299, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-32852933

RESUMO

Pain was implicated in many diseases. Despite effectiveness to treat moderate to severe pain, opioid analgesics elicited many side effects, greatly limiting their prescription in clinics. Based on M1, an active metabolite of tramadol, 3-((dimethylamino)methyl)-4-(3-hydroxyphenyl)piperidin-4-ol analogues were designed, synthesized, and evaluated in vitro. Among all the compounds tested, compound 23 was found to be a novel, highly selective, and potent MOR agonist (Ki MOR = 0.0034 nM, EC50 MOR = 0.68 nM, Emax = 206.5%; Ki DOR = 41.67 nM; Ki KOR = 7.9 nM). Structure-activity relationship exploration showed that the linker between the piperidine ring and the phenyl ring as well as substituent pattern of the phenyl ring played a pivotal role in binding affinity and selectivity. (3R, 4S)-23 (Ki MOR = 0.0021 ± 0.0001 nM, EC50 MOR = 0.0013 ± 0.0001 nM, Emax = 209.1 ± 1.4%; Ki DOR = 18.4 ± 0.7 nM, EC50 DOR = 74.5 ± 2.8 nM, Emax = 267.1 ± 1.4%; Ki KOR = 25.8 ± 0.2 nM, EC50 DOR = 116.2 ± 4.4 nM, Emax = 209.5 ± 1.4%) had more potent activity for opioid receptors than its enantiomer (3S, 4R)-23 and was found to be a potent, highly selective MOR agonist with novel scaffold. High binding affinity and selectivity of (3R, 4S)-23 for MOR over KOR and DOR and its mechanism of activating MOR were proposed by docking and molecular dynamics simulations, respectively.


Assuntos
Receptores Opioides kappa , Receptores Opioides mu , Analgésicos Opioides/farmacologia , Piperidinas/farmacologia , Receptores Opioides , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 189: 112070, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982651

RESUMO

Management of moderate to severe pain by clinically used opioid analgesics is associated with a plethora of side effects. Despite many efforts have been dedicated to reduce undesirable side effects, moderate progress has been made. In this work, starting from Tramadol, a series of 3-((dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)piperidine-1-carboxamide derivatives were designed and synthesized, and their in vitro and in vivo activities were evaluated. Our campaign afforded selective µ opioid receptor (MOR) ligand 2a (KiMOR: 7.3 ± 0.5 nM; KiDOR: 849.4 ± 96.6 nM; KiKOR: 49.1 ± 6.9 nM) as potent analgesic with ED50 of 3.1 mg/kg in 55 °C hot plate model. Its antinociception effect was blocked by opioid antagonist naloxone. High binding affinity toward MOR of compound 2a was associated with water bridge, salt bridge, hydrogen bond and hydrophobic interaction with MOR. The high selectivity of compound 2a for MOR over δ opioid receptor (DOR) and κ opioid receptor (KOR) was due to steric hindrance of compound 2a with DOR and KOR. 2a, a compound with novel scaffold, could serve as a lead for the development of novel opioid ligands.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Dor/tratamento farmacológico , Piperidinas/química , Piperidinas/farmacologia , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Animais , Feminino , Ligantes , Camundongos , Modelos Moleculares , Dor/metabolismo , Dor/patologia , Relação Estrutura-Atividade
5.
J Med Chem ; 62(24): 11054-11070, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31738550

RESUMO

Effective and safe analgesics represent an unmet medical need for the treatment of acute and chronic pain. A series of N-cyclopropylmethyl-7α-phenyl-6,14-endoethanotetrahydronorthebaines were designed, synthesized, and assayed, leading to the discovery of a benzylamine derivative (compound 4, SLL-039) as a highly selective and potent κ opioid agonist (κ, Ki = 0.47 nM, κ/µ = 682, κ/δ = 283), which was confirmed by functional assays in vitro and antinociceptive assays in vivo. The in vivo effect could be blocked by pretreatment with the selective κ antagonist nor-BNI. Moreover, this compound did not induce sedation, a common dose limiting effect of κ opioid receptor agonists, at its analgesic dose compared to U50,488H. The dissociation of sedation/antinociception found in SLL-039 was assumed to be correlated with the occupation of its benzamide motif in a unique subsite involving V1182.63, W124EL1, and E209EL2.


Assuntos
Analgésicos Opioides/farmacologia , Analgésicos/farmacologia , Benzilaminas/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Descoberta de Drogas , Morfinanos/farmacologia , Dor/tratamento farmacológico , Receptores Opioides kappa/agonistas , Analgésicos/química , Analgésicos Opioides/química , Animais , Comportamento Animal/efeitos dos fármacos , Benzamidas/química , Benzilaminas/química , Relação Dose-Resposta a Droga , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Morfinanos/química , Dor/metabolismo
6.
Bioorg Med Chem ; 26(14): 4254-4263, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30054192

RESUMO

With the purpose of identifying novel selective κ opioid receptor (KOR) antagonists as potential antidepressants from nepenthone analogues, starting from N-nor-N-cyclopropylmethyl-nepenthone (SLL-020ACP), a highly selective and potent KOR agonist, a series of 7ß-methyl-nepenthone analogues was conceived, synthesized and assayed on opioid receptors based on the concept of hybridization. According to the pharmacological results, the functional reversal observed in orvinol analogues by introduction of 7ß-methyl substituent could not be reproduced in nepenthone analogues. Alternatively, introduction of 7ß-methyl substituent was associated with substantial loss of both subtype selectivity and potency but not efficacy for nepenthone analogues, which was not found in 7ß-methyl orvinol analogues. Surprisingly, SLL-603, a 7ß-methyl analogue of SLL-020ACP, was identified to be a KOR full agonist. The possible molecular mechanism for the heterogeneity in activity cliff was also investigated. In conclusion, 7ß-methyl substituent was a structural locus associated with activity cliff and demonstrated as a pharmacological heterogeneity between nepenthone and orvinol analogues that warrants further investigations.


Assuntos
Morfinanos/farmacologia , Receptores Opioides kappa/agonistas , Animais , Células CHO , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Morfinanos/síntese química , Morfinanos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA