Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1153511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179840

RESUMO

There will be generated some adverse conditions in the process of acquculture farming with the continuous improvement of the intensive degree of modern aquaculture, such as crowding stress, hypoxia, and malnutrition, which will easily lead to oxidative stress. Se is an effective antioxidant, participating and playing an important role in the antioxidant defense system of fish. This paper reviews the physiological functions of selenoproteins in resisting oxidative stress in aquatic animals, the mechanisms of different forms of Se in anti-oxidative stress in aquatic animals and the harmful effects of lower and higher levels of Se in aquaculture. To summarize the application and research progress of Se in oxidative stress in aquatic animals and provide scientific references for its application in anti-oxidative stress in aquaculture.

2.
Sci China Life Sci ; 66(9): 2056-2069, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36795182

RESUMO

Broiler chicks are fast-growing and susceptible to dietary selenium (Se) deficiency. This study sought to reveal the underlying mechanisms of how Se deficiency induces key organ dysfunctions in broilers. Day-old male chicks (n=6 cages/diet, 6 chicks/cage) were fed with a Se-deficient diet (Se-Def, 0.047 mg Se/kg) or the Se-Def+0.3 mg Se/kg (Control, 0.345 mg Se/kg) for 6 weeks. The serum, liver, pancreas, spleen, heart, and pectoral muscle of the broilers were collected at week 6 to assay for Se concentration, histopathology, serum metabolome, and tissue transcriptome. Compared with the Control group, Se deficiency induced growth retardation and histopathological lesions and reduced Se concentration in the five organs. Integrated transcriptomics and metabolomics analysis revealed that dysregulation of immune and redox homeostasis related biological processes and pathways contributed to Se deficiency-induced multiple tissue damage in the broilers. Meanwhile, four metabolites in the serum, daidzein, epinephrine, L-aspartic acid and 5-hydroxyindoleacetic acid, interacted with differentially expressed genes with antioxidative effects and immunity among all the five organs, which contributed to the metabolic diseases induced by Se deficiency. Overall, this study systematically elucidated the underlying molecular mechanisms in the pathogenesis of Se deficiency-related diseases, which provides a better understanding of the significance of Se-mediated heath in animals.


Assuntos
Selênio , Animais , Masculino , Selênio/metabolismo , Selênio/farmacologia , Galinhas , Selenoproteínas/genética , Selenoproteínas/metabolismo , Oxirredução , Homeostase , Resposta ao Choque Térmico
3.
Redox Biol ; 57: 102482, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162257

RESUMO

Nutritional pancreatic atrophy (NPA) is a classical Se/vitamin E deficiency disease of chicks. To reveal molecular mechanisms of its pathogenesis, we fed day-old chicks a practical, low-Se diet (14 µg Se/kg), and replicated the typical symptoms of NPA including vesiculated mitochondria, cytoplasmic vacuoles, and hyaline bodies in acinar cells of chicks as early as day 18. Target pathway analyses illustrated a > 90% depletion (P < 0.05) of glutathione peroxidase 4 (GPX4) protein and up-regulated apoptotic signaling (cytochrome C/caspase 9/caspase 3) in the pancreas and(or) acinar cells of Se deficient chicks compared with Se-adequate chicks. Subsequently, we overexpressed and suppressed GPX4 expression in the pancreatic acinar cells and observed an inverse (P < 0.05) relationship between the GPX4 production and apoptotic signaling and cell death. Applying pull down and mass spectrometry, we unveiled that GPX4 bound prothymosin alpha (ProTalpha) to inhibit formation of apoptosome in the pancreatic acinar cells. Destroying this novel protein-protein interaction by silencing either gene expression accelerated H2O2-induced apoptosis in the cells. In the end, we applied GPX4 shRNA to silence GPX4 expression in chick embryo and confirmed the physiological relevance of the GPX4 role and mechanism shown ex vivo and in the acinar cells. Altogether, our results indicated that GPX4 depletion in Se-deficient chicks acted as a major contributor to their development of NPA due to the lost binding of GPX4 to ProTalpha and its subsequent inhibition on the cytochrome c/caspase 9/caspase 3 cascade in the acinar cells. Our findings not only provide a novel molecular mechanism for explaining pathogenesis of NPA but also reveal a completely new cellular pathway in regulating apoptosis by selenoproteins.

4.
PLoS One ; 16(10): e0259475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714891

RESUMO

Tendinopathy is a complex multifaceted tendinopathy often associated with overuse and with its high prevalence resulting in significant health care costs. At present, the pathogenesis and effective treatment of tendinopathy are still not sufficiently elucidated. The purpose of this research is to intensely explore the genes, functional pathways, and immune infiltration characteristics of the occurrence and development of tendinopathy. The gene expression profile of GSE106292, GSE26051 and GSE167226 are downloaded from GEO (NCBI comprehensive gene expression database) and analyzed by WGCNA software bag using R software, GSE26051, GSE167226 data set is combined to screen the differential gene analysis. We subsequently performed gene enrichment analysis of Gene Ontology (GO) and "Kyoto Encyclopedia of Genes and Genomes" (KEGG), and immune cell infiltration analysis. By constructing the LASSO regression model, Support vector machine (SVM-REF) and Gaussian mixture model (GMMs) algorithms are used to screen, to identify early diagnostic genes. We have obtained a total of 171 DEGs through WGCNA analysis and differentially expressed genes (DEGs) screening. By GO and KEGG enrichment analysis, it is found that these dysregulated genes were related to mTOR, HIF-1, MAPK, NF-κB and VEGF signaling pathways. Immune infiltration analysis showed that M1 macrophages, activated mast cells and activated NK cells had infiltration significance. After analysis of THE LASSO SVM-REF and GMMs algorithms, we found that the gene MACROD1 may be a gene for early diagnosis. We identified the potential of tendon disease early diagnosis way and immune gene regulation MACROD1 key infiltration characteristics based on comprehensive bioinformatics analysis. These hub genes and functional pathways may as early biomarkers of tendon injuries and molecular therapy level target is used to guide drug and basic research.


Assuntos
Predisposição Genética para Doença , Aprendizado de Máquina , Tendinopatia/genética , Hidrolases de Éster Carboxílico/genética , Biologia Computacional/métodos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Sistema de Sinalização das MAP Quinases/genética , NF-kappa B/genética , Serina-Treonina Quinases TOR/genética , Fator A de Crescimento do Endotélio Vascular/genética
5.
Front Physiol ; 12: 696256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456747

RESUMO

Liver necroptosis of chicks is induced by selenium (Se)/vitamin E (VE) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms of liver necrosis, a pool of the corn-soy basal diet (10 µg Se/kg; no VE added), a basal diet plus all-rac-α-tocopheryl acetate (50 mg/kg), Se (sodium selenite at 0.3 mg/kg), or both of these nutrients were provided to day-old broiler chicks (n = 40/group) for 6 weeks. High incidences of liver necrosis (30%) of chicks were induced by -SE-VE, starting at day 16. The Se concentration in liver and glutathione peroxidase (GPX) activity were decreased (P < 0.05) by dietary Se deficiency. Meanwhile, Se deficiency elevated malondialdehyde content and decreased superoxide dismutase (SOD) activity in the liver at weeks 2 and 4. Chicks fed with the two Se-deficient diets showed lower (P < 0.05) hepatic mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, Selenoh, Selenok, Selenom, Selenon, Selenoo, Selenop, Selenot, Selenou, Selenow, and Dio1 than those fed with the two Se-supplemented diets. Dietary Se deficiency had elevated (P < 0.05) the expression of SELENOP, but decreased the downregulation (P < 0.05) of GPX1, GPX4, SELENON, and SELENOW in the liver of chicks at two time points. Meanwhile, dietary Se deficiency upregulated (P < 0.05) the abundance of hepatic proteins of p38 mitogen-activated protein kinase, phospho-p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, phospho-c-Jun N-terminal kinase, extracellular signal-regulated kinase, phospho-mitogen-activated protein kinase, receptor-interacting serine-threonine kinase 1 (RIPK1), receptor-interacting serine-threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL) at two time points. In conclusion, our data confirmed the differential regulation of dietary Se deficiency on several key selenoproteins, the RIPK1/RIPK3/MLKL, and mitogen-activated protein kinase signaling pathway in chicks and identified new molecular clues for understanding the etiology of nutritional liver necrosis.

6.
Redox Biol ; 45: 102048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34167027

RESUMO

Selenoprotein V (SELENOV) is a new and the least conserved member of the selenoprotein family. Herein we generated Selenov knockout (KO) mice to determine its in vivo function. The KO led to 16-19% increases (P < 0.05) in body weight that were largely due to 54% higher (P < 0.05) fat mass accumulation, compared with the wild-type (WT) controls. The extra fat accumulation in the KO mice was mediated by up-regulations of genes and proteins involved in lipogenesis (Acc, Fas, Dgat, and Lpl; up by 40%-1.1-fold) and down-regulations of lipolysis (Atgl, Hsl, Ces1d, and Cpt1a; down by 36-89%) in the adipose tissues. The KO also decreased (P < 0.05) VO2 consumption (14-21%), VCO2 production (14-16%), and energy expenditure (14-23%), compared with the WT controls. SELENOV and O-GlcNAc transferase (OGT) exhibited a novel protein-protein interaction that explained the KO-induced decreases (P < 0.05) of OGT protein (15-29%), activity (33%), and function (O-GlcNAcylation, 10-21%) in the adipose tissues. A potential cascade of SELENOV-OGT-AMP-activated protein kinase might serve as a central mechanism to link the biochemical and molecular responses to the KO. Overall, our data revealed a novel in vivo function and mechanism of SELENOV as a new inhibitor of body fat accumulation, activator of energy expenditure, regulator of O-GlcNAcylation, and therapeutic target of such related disorders.


Assuntos
Metabolismo Energético , Lipólise , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Metabolismo Energético/genética , Camundongos , Camundongos Knockout
7.
Nutrients ; 13(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062793

RESUMO

Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.


Assuntos
Doenças Metabólicas/metabolismo , MicroRNAs/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/genética , Selênio/metabolismo , Selenoproteínas/metabolismo , Epigênese Genética/efeitos dos fármacos , Humanos , Doenças Metabólicas/genética
8.
Free Radic Biol Med ; 160: 670-679, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32846216

RESUMO

Selenoprotein V (SELENOV) contains a thioredoxin-like fold and a conserved CxxU motif with a potential redox function. This study was to assess its in vivo and in vitro roles and mechanisms in coping with different oxidant insults. In Experiment (Expt.)1, SELENOV knockout (KO) and wild type (WT) mice (male, 8-wk old) were given an ip injection of saline, diquat (DQ, 12.5 mg/kg), or N-acetyl-para-aminophenol (APAP, 300 mg/kg) (n = 10), and killed 5 h after the injection. In Expt. 2, primary hepatocytes of WT and KO were treated with DQ (0-0.75 mM) or APAP (0-6 mM) for 12 h. In Expt. 3, 293 T cells overexpressing Selenov gene (OE) were treated with APAP (0-4 mM) for 24 h or H2O2 (0-0.4 mM) for 12 h. Compared with the WT, the DQ- and APAP-injected KO mice had higher (P < 0.05) serum alanine aminotransferase activities and hepatic malondialdehyde (MDA), protein carbonyl, endoplasmic reticulum (ER) stress-related proteins (BIP and CHOP), apoptosis-related proteins (FAK and caspase-9), and 3-nitrotyrosine, along with lower total anti-oxidizing-capability (T-AOC) and severer hepatic necrosis. Likewise, the DQ and APAP-treated KO hepatocytes had elevated (P < 0.05) cell death (10-40%), decreased (P < 0.05) T-AOC (63-83%), glutathione (26-87%), superoxide dismutase (SOD) activity (28-36%), mRNA levels of redox enzymes (Cat, Gcs, Gpx3, and Sod) and (or) sharper declines (P < 0.05) in cellular respiration and ATP production than that of the WT cells. In contrast, the OE cells had greater viability and T-AOC and lower MDA, and carbonyl contents after the APAP and H2O2 exposures (all at P < 0.05) than the controls. Moreover, the OE cells had greater (P < 0.05) redox enzyme activities (GPX, TrxR, and SOD), and lower (P < 0.05) expressions of ER stress-related genes (Atf4, Atf6, Bip, Xbp1t, Xbp1s, and Chop) and proteins (BIP, CHOP, FAK, and caspase-9) than the control cells after the treatment of H2O2 (0.4 mM). In conclusion, SELENOV conferred protections in vivo and in vitro against the reactive oxygen and nitrogen species-mediated ER stress-related signaling and oxidative injuries.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Estresse do Retículo Endoplasmático , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Fígado/metabolismo , Masculino , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
9.
Evol Bioinform Online ; 16: 1176934320954870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35173405

RESUMO

Monitoring the mutation and evolution of the virus is important for tracing its ongoing transmission and facilitating effective vaccine development. A total of 342 complete genomic sequences of SARS-CoV-2 were analyzed in this study. Compared to the reference genome reported in December 2019, 465 mutations were found, among which, 347 occurred in only 1 sequence, while 26 occurred in more than 5 sequences. For these 26 further identified as SNPs, 14 were closely linked and were grouped into 5 profiles. Phylogenetic analysis revealed the sequences formed 2 major groups. Most of the sequences in late period (March and April) constituted the Cluster II, while the sequences before March in this study and the reported S/L and A/B/C types in previous studies were all in Cluster I. The distributions of some mutations were specific geographically or temporally, the potential effect of which on the transmission and pathogenicity of SARS-CoV-2 deserves further evaluation and monitoring. Two mutations were found in the receptor-binding domain (RBD) but outside the receptor-binding motif (RBM), indicating that mutations may only have marginal biological effects but merit further attention. The observed novel sequence divergence is of great significance to the study of the transmission, pathogenicity, and development of an effective vaccine for SARS-CoV-2.

10.
J Nutr ; 150(2): 294-302, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618431

RESUMO

BACKGROUND: Ectopic fat accumulation in skeletal muscle results in dysfunction and atrophy, but the underlying molecular mechanisms remain unclear. OBJECTIVE: The aim of this study was to investigate the effects of a high-fat diet (HFD) in modulating the structure and energy metabolism of skeletal muscle and the underlying mechanisms in mice. METHODS: Four-week-old male C57BL/6 J mice (n = 30) were allowed 1 wk for acclimatization. After 6 mice with low body weight were removed from the study, the remaining 24 mice were fed with a normal-fat diet (NFD; 10% energy from fat, n = 12) or an HFD (60% energy from fat, n = 12) for 24 wk. At the end of the experiment, serum glucose and lipid concentrations were measured, and skeletal muscle was collected for atrophy analysis, inflammation measurements, and phosphoproteomic analysis. RESULTS: Compared with the NFD, the HFD increased (P < 0.05) body weight (35.8%), serum glucose (64.5%), and lipid (27.3%) concentrations, along with elevated (P < 0.05) expressions of the atrophy-related proteins muscle ring finger 1 (MURF1; 27.6%) and muscle atrophy F-box (MAFBX; 44.5%) in skeletal muscle. Phosphoproteomic analysis illustrated 64 proteins with differential degrees of phosphorylation between the HFD and NFD groups. These proteins were mainly involved in modulating cytoskeleton [adenylyl cyclase-associated protein 2 (CAP2) and actin-α skeletal muscle (ACTA1)], inflammation [NF-κB-activating protein (NKAP) and serine/threonine-protein kinase RIO3 (RIOK3)], glucose metabolism [Cdc42-interacting protein 4 (TRIP10); protein kinase C, and casein kinase II substrate protein 3 (PACSIN3)], and protein degradation [heat shock protein 90 kDa (HSP90AA1)]. The HFD-induced inhibitions of the insulin signaling pathway and activations of inflammation in skeletal muscle were verified by Western blot analysis. CONCLUSIONS: Quantitative phosphoproteomic analysis in C57BL/6 J mice fed an NFD or HFD for 24 wk revealed that the phosphorylation of inflammatory proteins and proteins associated with glucose metabolism at specific serine residues may play critical roles in the regulation of skeletal muscle atrophy induced by an HFD. This work provides information regarding underlying molecular mechanisms for inflammation-induced dysfunction and atrophy in skeletal muscle.


Assuntos
Dieta Hiperlipídica , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Fosfoproteínas/metabolismo , Proteômica , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fosforilação , Proteólise , Transdução de Sinais
11.
J Nutr ; 150(3): 483-491, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31773160

RESUMO

BACKGROUND: The metabolic function of selenoprotein V (SELENOV) remains unknown. OBJECTIVES: Two experiments were conducted to determine effects of the Selenov knockout (KO) on selenium concentration and mRNA, protein, and/or activity of 4 major selenoproteins [glutathione peroxidase (GPX) 1, GPX4, thioredoxin reductase-1 (TXNRD1), and selenoprotein P (SELENOP)] in the serum, liver, testis, and/or white adipose tissue (WAT) of mice fed different dietary selenium and fat concentrations. METHODS: In Experiment (Expt) 1, 40 KO and 40 wild-type (WT) mice (males, 8 wk old) were fed (n = 10/genotype) a casein-sucrose basal diet plus 0, 0.3, 1, or 3 mg Se/kg (as sodium selenite) for 32 wk . In Expt 2, 20 KO and 20 WT mice (males, 8 wk old) were fed (n  = 10/genotype) a normal-fat diet (NF; 10% calories from fat) or a high-fat diet (HF; 60% calories from fat) for 19 wk. RESULTS: In Expt 1, the KO caused consistent or substantial decreases (P < 0.05) of mRNA amounts of Gpx1, Txnrd1, and Selenop in the testis (≤52%), but selenium concentrations (19-29%) and GPX activities (≤ 50%) were decreased in the liver across different dietary selenium concentrations . Hepatic and testis GPX1 protein was elevated (≤31%) and decreased (≤45%) by the KO, respectively. In Expt 2, the genotype and dietary fat intake exerted interaction effects ( P < 0.05) on Gpx1 mRNA amounts in the WAT; Gpx1, Txnrd1, and Selenop mRNA amounts and TXNRD activities in the testis; and selenium concentrations in the serum and liver. However, these 2 treatments produced largely independent or additive effects (P < 0.05) on the GPX1 and SELENOP protein amounts in the liver and testis (up to ± 50% changes). CONCLUSIONS: The KO-mediated changes in the tissue selenium concentrations and functional expression of 3 major selenoproteins implied potential for SELENOV in regulating body selenium metabolism in the mouse.


Assuntos
Dieta , Gorduras na Dieta/administração & dosagem , Selênio/administração & dosagem , Selenoproteínas/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Glutationa Peroxidase/sangue , Glutationa Peroxidase/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , Selênio/sangue , Selênio/metabolismo , Selenoproteínas/genética , Testículo/enzimologia , Testículo/metabolismo
12.
Poult Sci ; 98(10): 4247-4254, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371860

RESUMO

Selenium (Se) is an essential nutrient for humans and all food-producing animal species. Nutritional deficiencies of Se and (or) vitamin E induce exudative diathesis, nutritional pancreatic atrophy, and nutritional muscular dystrophy in chicks. Although these diseases are presumably associated with the need of Se for the synthesis of the 21st amino acid, selenocysteine (Sec, U) in selenoproteins, metabolic functions of the 25 selenoproteins identified in avian species remain largely unknown. This paper reviews regulations of the whole selenogenome and selected selenoproteins by different concentrations and chemical forms of dietary Se and (or) vitamin E in various affected tissues. The avian selenogenome may be divided into 2 groups: responders and non-responders, based on its response to dietary Se and vitamin E changes. Mechanisms for the gene-, tissue-, and age-dependent responses and the correlation with the stress and cell death signaling are explored. Overall, this review intends to link the novel regulation and function of avian selenogenome to the protection by Se against oxidative insults associated with the classical Se/vitamin E deficiency diseases in chicks.


Assuntos
Galinhas/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Vitamina E/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Selênio/administração & dosagem , Vitamina E/administração & dosagem
13.
Free Radic Biol Med ; 127: 108-115, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800654

RESUMO

Glutathione peroxidase 1 (GPX1) is a selenium-dependent enzyme that reduces intracellular hydrogen peroxide and lipid peroxides. While past research explored regulations of gene expression and biochemical function of this selenoperoxidase, GPX1 has recently been implicated in the onset and development of chronic diseases. Clinical data have shown associations of human GPX1 gene variants with elevated risks of diabetes. Knockout and overexpression of Gpx1 in mice may induce types 1 and 2 diabetes-like phenotypes, respectively. This review assembles the latest advances in this new field of selenium biology, and attempts to postulate signal and molecular mechanisms mediating the role of GPX1 in glucose and lipid metabolism-related diseases. Potential therapies by harnessing the beneficial effects of this ubiquitous redox-modulating enzyme are briefly discussed.


Assuntos
Diabetes Mellitus/enzimologia , Glutationa Peroxidase/metabolismo , Metabolismo dos Lipídeos/fisiologia , Obesidade/enzimologia , Selenoproteínas/metabolismo , Animais , Humanos , Camundongos , Ratos , Glutationa Peroxidase GPX1
14.
J Nutr ; 147(5): 789-797, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28356430

RESUMO

Background: A new organic selenium compound, 2-hydroxy-4-methylselenobutanoic acid (SeO), displayed a greater bioavailability than sodium selenite (SeNa) or seleno-yeast (SeY) in several species.Objective: This study sought to determine the regulation of the speciation of selenium, expression of selenogenome and selenocysteine biosynthesis and degradation-related genes, and production of selenoproteins by the 3 forms of selenium in the tissues of broiler chicks.Methods: Day-old male chicks (n = 6 cages/diet, 6 chicks/cage) were fed a selenium-deficient, corn and soy-based diet [base diet (BD), 0.05 mg Se/kg] or the BD + SeNa, SeY, or SeO at 0.2 mg Se/kg for 6 wk. Plasma, livers, and pectoral and thigh muscles were collected at weeks 3 and 6 to assay for total selenium, selenomethionine, selenocysteine, redox status, and selected genes, proteins, and enzymes.Results: Although both SeY and SeO produced greater concentrations (P < 0.05) of total selenium (20-172%) and of selenomethionine (≤15-fold) in the liver, pectoral muscle, and thigh than those of SeNa, SeO further raised (P < 0.05) these concentrations by 13-37% and 43-87%, respectively, compared with SeY. Compared with the BD, only SeO enhanced (P < 0.05) the mRNA of selenoprotein (Seleno) s and methionine sulfoxide reductase B1 (Msrb1) in the liver and thigh (62-98%) and thioredoxin reductase (TXRND) activity in the pectoral and thigh muscles (20-37%) at week 3. Furthermore, SeO increased (P < 0.05) the expression of glutathione peroxidase (Gpx) 3, GPX4, SELENOP, and SELENOU relative to the SeNa group by 26-207%, and the expression of Selenop, O-phosphoseryl-transfer RNA (tRNA):selenocysteinyl-tRNA synthase, GPX4, and SELENOP relative to the SeY group by 23-55% in various tissues.Conclusions: Compared with SeNa or SeY, SeO demonstrated a unique ability to enrich selenomethionine and total selenium depositions, to induce the early expression of Selenos and Mrsb1 mRNA and TXRND activity, and to enhance the protein production of GPX4, SELENOP, and SELENOU in the tissues of chicks.


Assuntos
Butiratos/farmacologia , Fígado/efeitos dos fármacos , Músculos/efeitos dos fármacos , Compostos de Selênio/farmacologia , Selênio/metabolismo , Selenometionina/metabolismo , Selenoproteínas/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Butiratos/metabolismo , Galinhas , Glutationa Peroxidase/metabolismo , Fígado/metabolismo , Masculino , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Músculos/metabolismo , RNA Mensageiro/metabolismo , Selênio/deficiência , Compostos de Selênio/metabolismo , Selenoproteínas/genética , Selenito de Sódio/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Leveduras
15.
Biol Trace Elem Res ; 170(2): 449-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26315306

RESUMO

Selenoprotein M (SelM) may function as thiol disulfide oxidoreductase that participates in the formation of disulfide bonds and can be implicated in calcium responses. SelM may have a functional role in catalyzing free radicals and has been associated with Alzheimer's disease (AD). However, studies of SelM in chicken remain very limited. In this study, two groups of day-old broiler chicks (n = 40/group) were fed a corn-soy basal diet (BD, 13 µg Se/kg) and BD supplemented with Se (as sodium selenite) at 0.3 mg/kg. The brain was collected at 14, 21, 28, and 42 days of age. We performed a sequence analysis and predicted the structure and function of SelM. We also investigated the effects of Se deficiency on the expression of Selt, Selw, and Selm and the Se status in the chicken brain. The results show that Se deficiency induced the lower (P < 0.05) Se content, glutathione peroxidase (GPx), and catalase (CAT) activities; increased (P < 0.05) malondialdehyde (MDA) content; and reduced (P < 0.05) the expression of Selm messenger RNA (mRNA) and protein abundance of SelM in the brain. However, there were no significant brain Selt and Selw mRNA levels by dietary Se deficiency in chicks. The different regulations of these three redox (Rdx) protein expressions by Se deficiency represent a novel finding of the present study. Our results demonstrated that SelM may have an important role in protecting against oxidative damage in the brain of chicken, which might shed light on the role of SelM in human neurodegenerative disease. More studies are needed to confirm our conclusion.


Assuntos
Proteínas Aviárias/biossíntese , Encéfalo/metabolismo , Galinhas/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Selênio/deficiência , Selenoproteínas/biossíntese , Animais , Humanos
16.
Biol Trace Elem Res ; 166(2): 216-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25876085

RESUMO

Selenoprotein U (SelU) may regulate a myriad of biological processes through its redox function. In chicks, neither the nucleotide sequence nor the amino acid sequence is known. The main objectives of this study were to clone and characterize the chicken Selu gene and investigate Selu messenger RNA (mRNA) and protein expression in chicken tissues. The coding sequence (CDS) of Selu contained 387 bases with a typical mammalian selenocysteine insertion sequence (SECIS) located in the 3'-untranslated region. The deduced amino acid sequence of chicken SelU contains 224 amino acids with UAA as the stop codon. Like all SelU genes identified in different species, chicken SelU contains one well-conserved selenocysteine (Sec) at the 85th position encoded by the UGA codon. The SECIS element was with the conserved denosine (--AAA--) rather than the motif cytidine (--CC--) motif. Moreover, the expression pattern of Selu mRNA in muscle, liver, kidney, heart, spleen, lung, testis, and brain was analyzed with real-time quantitative PCR in young male chickens fed a Se-deficient corn-soybean meal basal diet supplemented with 0.0 and 0.3 mg Se/kg in the form of sodium selenite. We found that the abundance of Selu mRNA in muscle, liver, kidney, heart, spleen, and lung was downregulated (P < 0.05) by Se deficiency. However, it was not affected by dietary Se concentrations in testis and brain. Furthermore, protein abundance of SelU in these seven tissues was consistent with the mRNA abundance. Hence, we suggest that Selu might play an important role in the biochemical function of Se in birds.


Assuntos
Selenoproteínas/metabolismo , Animais , Galinhas , Masculino , Reação em Cadeia da Polimerase , Selenoproteínas/genética , Selenito de Sódio
17.
Free Radic Biol Med ; 83: 129-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25668720

RESUMO

Nutritional muscular dystrophy (NMD) of chicks is induced by dietary selenium (Se)/vitamin E (Vit. E) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms related to the presumed oxidative cell damage, we fed four groups of 1-day-old broiler chicks (n = 40/group) with a basal diet (BD; 10 µg Se/kg; no Vit. E added, -Se -Vit. E) or the BD plus all-rac-α-tocopheryl acetate at 50mg/kg (-Se +Vit. E), Se (as sodium selenite) at 0.3mg/kg (+Se -Vit. E), or both of these nutrients (+Se +Vit. E) for 6 weeks. High incidences of NMD (93%) and mortality (36%) of the chicks were induced by the BD, starting at week 3. Dietary Se deficiency alone also induced muscle fiber rupture and coagulation necrosis in the pectoral muscle of chicks at week 3 and thereafter, with increased (P < 0.05) malondialdehyde, decreased (P < 0.05) total antioxidant capacity, and diminished (P < 0.05) glutathione peroxidase activities in the muscle. To link these oxidative damages of the muscle cells to the Se-deficiency-induced NMD, we first determined gene expression of the potential 26 selenoproteins in the muscle of the chicks at week 2 before the onset of symptoms. Compared with the +Se chicks, the -Se chicks had lower (P < 0.05) muscle mRNA levels of Gpx1, Gpx3, Gpx4, Sepp1, Selo, Selk, Selu, Selh, Selm, Sepw1, and Sep15. The -Se chicks also had decreased (P < 0.05) production of 6 selenoproteins (long-form selenoprotein P (SelP-L), GPx1, GPx4, Sep15, SelW, and SelN), but increased levels (P < 0.05) of the short-form selenoprotein P in muscle at weeks 2 and 4. Dietary Se deficiency elevated (P < 0.05) muscle p53, cleaved caspase 3, cleaved caspase 9, cyclooxygenase 2 (COX2), focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), phospho-Akt, nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, phospho-JNK, and phospho-ERK and decreased (P < 0.05) muscle procaspase 3, procaspase 9, and NF-κB inhibitor α. In conclusion, the downregulation of SelP-L, GPx1, GPx4, Sep15, SelW, and SelN by dietary Se deficiency might account for induced oxidative stress and the subsequent peroxidative damage of chick muscle cells via the activation of the p53/caspase 9/caspase 3, COX2/FAK/PI3K/Akt/NF-κB, and p38 MAPK/JNK/ERK signaling pathways. Metabolism of peroxides and redox regulation are likely to be the mechanisms whereby these selenoproteins prevented the onset of NMD in chicks.


Assuntos
Apoptose , Dieta/efeitos adversos , Distrofia Muscular Animal/prevenção & controle , Peróxidos/metabolismo , Selenoproteínas/metabolismo , Animais , Antioxidantes , Western Blotting , Proliferação de Células , Células Cultivadas , Galinhas , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Técnicas Imunoenzimáticas , Masculino , Distrofia Muscular Animal/etiologia , Distrofia Muscular Animal/metabolismo , Oxirredução , Estresse Oxidativo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Selênio/metabolismo , Selenoproteínas/genética , Glutationa Peroxidase GPX1
18.
J Nutr ; 143(7): 1115-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23677865

RESUMO

Our objectives were to determine if porcine serum could be enriched with selenium (Se) by feeding pigs with high concentrations of dietary Se and if the Se-biofortified serum inhibited proliferation of 3 types of human cancer cells. In Expt. 1, growing pigs (8 wk old, n = 3) were fed 0.02 or 3.0 mg Se/kg (as sodium selenite) for 16 wk and produced serum with 0.5 and 5.4 µmol/L Se, respectively. In Expt. 2, growing pigs (5 wk old, n = 6) were fed 0.3 or 1.0 mg Se/kg (as Se-enriched yeast) for 6 wk and produced serum with 2.6 and 6.2 µmol/L Se, respectively. After the Se-biofortified porcine sera were added at 16% in RPMI 1640 to treat NCI-H446, DU145, and HTC116 cells for 144 h, they decreased (P < 0.05) the viability of the 3 types of human cancer cells by promoting apoptosis, compared with their controls. This effect was replicated only by adding the appropriate amount of methylseleninic acid to the control serum and was mediated by a downregulation of 8 cell cycle arrest genes and an upregulation of 7 apoptotic genes. Along with 6 previously reported selenoprotein genes, selenoprotein T (Selt), selenoprotein M (Selm), selenoprotein H (Selh), selenoprotein K (Selk), and selenoprotein N (Sepn1) were revealed to be strongly associated with the cell death-related signaling induced by the Se-enriched porcine serum. In conclusion, porcine serum could be biofortified with Se to effectively inhibit the proliferation of 3 types of human cancer cells and the action synchronized with a matrix of coordinated functional expression of multiple selenoprotein genes.


Assuntos
Ração Animal , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/química , Suplementos Nutricionais , Selênio/administração & dosagem , Soro/química , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Compostos Organosselênicos/farmacologia , Selenoproteínas/genética , Selenoproteínas/metabolismo , Selenito de Sódio/farmacologia , Suínos , Regulação para Cima
19.
J Nutr ; 143(5): 613-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23514769

RESUMO

Dietary selenium (Se) deficiency causes muscular dystrophy in various species, but the molecular mechanism remains unclear. Our objectives were to investigate: 1) if dietary Se deficiency induced different amounts of oxidative stress, lipid peroxidation, and cell apoptosis in 3 skeletal muscles; and 2) if the distribution and expression of 4 endoplasmic reticulum (ER) resident selenoprotein genes (Sepn1, Selk, Sels, and Selt) were related to oxidative damages in these muscles. Two groups of day-old layer chicks (n = 60/group) were fed a corn-soy basal diet (33 µg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or the diet supplemented with Se (as sodium selenite) at 0.15 mg/kg for 55 d. Dietary Se deficiency resulted in accelerated (P < 0.05) cell apoptosis that was associated with decreased glutathione peroxidase activity and elevated lipid peroxidation in these muscles. All these responses were stronger in the pectoral muscle than in the thigh and wing muscles (P < 0.05). Relative distribution of the 4 ER resident selenoprotein gene mRNA amounts and their responses to dietary Se deficiency were consistent with the resultant oxidative stress and cell apoptosis in the 3 muscles. Expression of Sepn1, Sels, and Selt in these muscles was correlated with (r > 0.72; P < 0.05) that of Sepsecs encoding a key enzyme for biosynthesis of selenocysteine (selenocysteinyl-tRNA synthase). In conclusion, the pectoral muscle demonstrated unique expression patterns of the ER resident selenoprotein genes and GPx activity, along with elevated susceptibility to oxidative cell death, compared with the other skeletal muscles. These features might help explain why it is a primary target of Se deficiency diseases in chicks.


Assuntos
Apoptose , Deficiências Nutricionais/metabolismo , Expressão Gênica , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Selênio/deficiência , Selenoproteínas/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Animais , Galinhas , Suplementos Nutricionais , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Proteínas Musculares/genética , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Selenocisteína/biossíntese , Selenoproteínas/genética , Oligoelementos/deficiência , Oligoelementos/metabolismo , Oligoelementos/farmacologia
20.
Free Radic Biol Med ; 52(8): 1335-42, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22342560

RESUMO

Although supranutrition of selenium (Se) is considered a promising anti-cancer strategy, recent human studies have shown an intriguing association between high body Se status and diabetic risk. This study was done to determine if a prolonged high intake of dietary Se actually induced gestational diabetes in rat dams and insulin resistance in their offspring. Forty-five 67-day-old female Wistar rats (n=15/diet) were fed a Se-deficient (0.01 mg/kg) corn-soy basal diet (BD) or BD+Se (as Se-yeast) at 0.3 or 3.0mg/kg from 5 weeks before breeding to day 14 postpartum. Offspring (n=8/diet) of the 0.3 and 3.0mg Se/kg dams were fed with the same respective diet until age 112 days. Compared with the 0.3mg Se/kg diet, the 3.0mg/kg diet induced hyperinsulinemia (P<0.01), insulin resistance (P<0.01), and glucose intolerance (P<0.01) in the dams at late gestation and/or day 14 postpartum and in the offspring at age 112 days. These impairments concurred with decreased (P<0.05) mRNA and/or protein levels of six insulin signal proteins in liver and muscle of dams and/or pups. Dietary Se produced dose-dependent increases in Gpx1 mRNA or GPX1 activity in pancreas, liver, and erythrocytes of dams. The 3.0mg Se/kg diet decreased Selh (P<0.01), Sepp1 (P=0.06), and Sepw1 (P<0.01), but increased Sels (P<0.05) mRNA levels in the liver of the offspring, compared with the 0.3mg Se/kg diet. In conclusion, supranutrition of Se as a Se-enriched yeast in rats induced gestational diabetes and insulin resistance. Expression of six selenoprotein genes, in particular Gpx1, was linked to this metabolic disorder.


Assuntos
Dieta , Resistência à Insulina , Selênio/administração & dosagem , Animais , Glicemia/análise , Feminino , Expressão Gênica , Homeostase , Insulina/sangue , Lipídeos/sangue , Fígado/metabolismo , Músculos/metabolismo , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...