Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Anal Chem ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748451

RESUMO

Unraveling bacterial identity through Raman scattering techniques has been persistently challenging due to homogeneously amplified Raman signals across a wide variety of bacterial molecules, predominantly protein- or nucleic acid-mediated. In this study, we present an approach involving the use of silver nanoparticles to completely and uniformly "mask" adsorption on the surface of bacterial molecules through sodium borohydride and sodium chloride. This approach enables the acquisition of enhanced surface-enhanced Raman scattering (SERS) signals from all components on the bacterial surface, facilitating rapid, specific, and label-free bacterial identification. For the first time, we have characterized the identity of a bacterium, including its DNA, metabolites, and cell walls, enabling the accurate differentiation of various bacterial strains, even within the same species. In addition, we embarked on an exploration of the origin and variability patterns of the main characteristic peaks of Gram-positive and Gram-negative bacteria. Significantly, the SERS peak ratio was found to determine the inflection point of accelerated bacterial death upon treatment with antimicrobials. We further applied this platform to identify 15 unique clinical antibiotic-resistant bacterial strains, including five Escherichia coli strains in human urine, a first for Raman technology. This work has profound implications for prompt and accurate identification of bacteria, particularly antibiotic-resistant strains, thereby significantly enhancing clinical diagnostics and antimicrobial treatment strategies.

2.
Hortic Res ; 11(5): uhae060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716228

RESUMO

High levels of free amino acids (AAs) in tea leaves are crucial for tea flavor and health function; however, the dynamic AA biosynthesis, transport, and turnover in tea plants remain elusive. Here we dissected whole tea plants for these dynamics by assessing AA profiles and transcriptomes of metabolic pathway genes in tea roots, stems, and leaves and revealing their distinctive features with regard to AA synthesis, transport, and degradation/recycling. Nitrogen assimilation dominated in the roots wherein glutamine (Gln), theanine, and arginine (Arg) were actively synthesized. Arg was transported into trunk roots and stems, together with Glu, Gln, and theanine as the major AAs in the xylem sap for long-distance root-to-leaf transport. Transcriptome analysis revealed that genes involved in Arg synthesis were highly expressed in roots, but those for Arg transport and degradation were highly expressed in stems and young leaves, respectively. CsGSIa transcripts were found in root meristem cells, root, stem and leaf vascular tissues, and leaf mesophyll where it appeared to participate in AA synthesis, transport, and recycling. Overexpression of CsGSIa in tea transgenic hairy roots and knockdown of CsGSIa in transgenic hairy roots and tea leaves produced higher and lower Gln and theanine than wild-type roots and leaves, respectively. This study provides comprehensive and new insights into AA metabolism and transport in the whole tea plant.

3.
Int J Biol Macromol ; 270(Pt 2): 132387, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759850

RESUMO

Alginate (SA) comprises repeating unis of ß-1, 4 linked ß-D-mannuronic acid (M) and α-L-guloronic acid (G) in varying proportions. The M/G ratio greatly impacts its anti-inflammatory properties in tissue healing wound, as less knowledge reported. This study examined the performances of both SA and SA hydrogel crosslinked with copper ions (SA-Cu) with different M/G ratios are studied. SA with higher M/G ratios stimulated macrophage migration and shifted from M0 to the pro-inflammatory Ml phenotype, while lower M/G ratios shifted from M1 to the pro-repair M2 phenotype. Furthermore, SA-Cu hydrogels with lower M/G ratios exhibited enhanced cross-linking degree, mechanical and rheological properties, as well Cu releasing rate. The reason may be attributed to a relative easy binding between Cu ions and G unit among Cu ions, M unit and G unit. In vitro cell evaluation showed that SA-Cu hydrogel with M/G ratio of 1:1 activated M2 macrophages and up-regulated anti-inflammatory cytokines expression more effectively than those of SA-Cu ratios (2:1) and (1:2). In vivo, SA-Cu hydrogel with M/G ratio of 1:1 expedited diabetic wound healing, accelerating infiltration and phenotype shift of M2 macrophages, and enhancing anti-inflammatory factors, epithelialization and collagen deposition in healing phases. This research highlights the significant role of M/G ratios in SA materials in influencing macrophage behavior and inflammatory responses, which would benefit its application field.

4.
Food Res Int ; 187: 114316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763629

RESUMO

This study investigates the dynamic changes in the aroma profile of Tuo tea during long-term storage, a process not well understood yet critical to the formation of aged tea's unique characteristics. Aroma profiling of Tuo tea samples stored for 2 to 25 years was conducted using sensory evaluation and the HS-SPME/GC × GC-QTOFMS technique, revealing a progressive transition from fresh, fruity, and floral scents to more stale, woody, and herbal notes. Among 275 identified volatiles, 55 were correlated with storage duration (|r| > 0.8, p < 0.05), and 49 differential compounds (VIP > 1, FC > 1.2, FC < 0.833, p < 0.05) were identified across three storage stages (2-4, 5-10, and 13-25 years). Furthermore, theaspirane, eucalyptol, o-xylene, and 1-ethylidene-1H-indene were selected as potential markers of Tuo tea aging, incorporating the implementation of a Random Forest (RF) model. Additionally, our model exhibited high accuracy in predicting the age of Tuo tea within a prediction error range of -2.51 to 2.84 years. This research contributes to a comprehensive understanding of the impact of storage time on tea aroma and aids in the precise identification of tea age.


Assuntos
Armazenamento de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Chá , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , Compostos Orgânicos Voláteis/análise , Armazenamento de Alimentos/métodos , Fatores de Tempo , Humanos , Camellia sinensis/química , Microextração em Fase Sólida
5.
Food Chem X ; 22: 101303, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38590631

RESUMO

'Baimmaocha' is a distinctive resource for production of high-quality black tea, and its processed black tea has unique aroma characteristics. 190 volatile compounds were identified by comprehensive two-dimensional gas chromatography-olfactometry-quadrupole-time-of-flight mass spectrometry(GC × GC-O-Q-TOMS), and among them 23 compounds were recognized as key odorants contributing to forming different aroma characteristics in 'Baimaocha' black teas of Rucheng, Renhua, and Lingyun (RCBT, RHBT, LYBT). The odor activity value coupled with GC-O showed that methyl salicylate (RCBT), geraniol (RHBT), trans-ß-ionone and benzeneacetaldehyde (LYBT) might be the most definitive aroma compounds identified from their respective regions. Furthermore, PLS analysis revealed three odorants as significant contributors to floral characteristic, four odorants related to fruity attribute, four odorants linked to fresh attribute, and three odorants associated with roasted attribute. These results provide novel insights into sensory evaluation and chemical substances of 'Baimaocha' black tea and provide a theoretical basis for controlling and enhancement tea aroma quality.

6.
J Agric Food Chem ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607257

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation and inflammation. Epigallocatechin gallate (EGCG) has been proven to be effective against NAFLD, but its hepatoprotective mechanisms based on the "gut microbiota-barrier-liver axis" are still not fully understood. Herein, the results demonstrated that EGCG effectively ameliorated NAFLD phenotypes and metabolic disorders in rats fed a high-fat diet (HFD), and inhibited intestinal barrier dysfunction and inflammation, which is also supported in the experiment of Caco-2 cells. Moreover, EGCG could restore gut microbiota diversity and composition, particularly promoting beneficial microbes, including short-chain fatty acids (SCFAs) producers, such as Lactobacillus, and suppressing Gram-negative bacteria, such as Desulfovibrio. The microbial modulation raised SCFA levels, decreased lipopolysaccharide levels, inhibited the TLR4/NF-κB pathway, and strengthened intestinal barrier function via Nrf2 pathway activation, thereby alleviating liver steatosis and inflammation. Spearman's correlation analysis showed that 24 key OTUs, negatively or positively associated with NAFLD and metabolic disorders, were also reshaped by EGCG. Our results suggested that a combinative improvement of EGCG on gut microbiota dysbiosis, intestinal barrier dysfunction, and inflammation might be a potential therapeutic target for NAFLD.

7.
Foods ; 13(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611425

RESUMO

Epigallocatechin-3-gallate (EGCG) is a main bioactive constituent in green tea. Being a redox-active polyphenol, high-dose EGCG exhibits pro-oxidative activity and could cause liver injury. L-theanine is a unique non-protein amino acid in green tea and could provide liver-protective effects. The purpose of this study was to investigate the hepatoprotective effects of L-theanine on EGCG-induced liver injury and the underlying mechanisms. A total of 300 mg/kg L-theanine was administrated to ICR mice for 7 days. Then, the acute liver injury model was established through intragastric administration of 1000 mg/kg EGCG. Pretreatment with L-theanine significantly alleviated the oxidative stress and inflammatory response caused by high-dose EGCG through modulation of Nrf2 signaling and glutathione homeostasis. Furthermore, metabolomic results revealed that L-theanine protects mice from EGCG-induced liver injury mainly through the regulation of amino acid metabolism, especially tryptophan metabolism. These findings could provide valuable insights into the potential therapeutic applications of L-theanine and highlight the importance of the interactions between dietary components.

8.
NPJ Precis Oncol ; 8(1): 74, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521810

RESUMO

Rab27A is a small GTPase-mediating exosome secretion, which participates in tumorigenesis of multiple cancer types. Understanding the biological role of Rab27A in non-small cell lung cancer (NSCLC) is of great importance for oncological research and clinical treatment. In this study, we investigate the function and internal mechanism of Rab27A in NSCLC. Results show that Rab27A is overexpressed in NSCLC, and regulates the tumor proliferation, migration, invasion, and cell motility in vitro and in vivo, and is negatively regulated by miR-124. Further research reveals that upregulated Rab27A can induce the production of IFNα in the medium by mediating exosome secretion. Then IFNα activates TYK2/STAT/HSPA5 signaling to promote NSCLC cell proliferation and metastasis. This process can be suppressed by TYK2 inhibitor Cerdulatinib. These results suggest that Rab27A is involved in the pathogenesis of NSCLC by regulating exosome secretion and downstream signaling, and inhibitors targeting this axis may become a promising strategy in future clinical practice.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38524397

RESUMO

Purpose: Circular RNAs (circRNAs) are newly identified endogenous non-coding RNAs that function as crucial gene modulators in the development of several diseases. By assessing the expression levels of circRNAs in peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD), this study attempted to find new biomarkers for COPD screening. Patients and Methods: We confirmed altered circRNA expression in PBMCs of COPD (n=41) vs controls (n=29). Further analysis focused on the highest and lowest circRNA expression levels. The T-test is used to assess the statistical variances in circRNAs among COPD patients in the smoking and non-smoking cohorts. Additionally, among smokers, the Spearman correlation test assesses the association between circRNAs and clinical indicators. Results: Two circRNAs, hsa_circ_0042590 and hsa_circ_0049875, that were highly upregulated and downregulated in PBMCs from COPD patients were identified and verified. Smokers with COPD had lower hsa_circ_0042590 and higher hsa_circ_0049875, in comparison to non-smokers. There was a significant correlation (r=0.52, P<0.01) between the number of acute exacerbations (AEs) that smokers with COPD experienced in the previous year and the following year (r=0.67, P<0.001). Moreover, hsa_circ_0049875 was connected to the quantity of AEs in the year prior (r=0.68, P<0.0001) as well as the year after (r=0.72, P<0.0001). AUC: 0.79, 95% CI: 0.1210-0.3209, P<0.0001) for hsa_circ_0049875 showed a strong diagnostic value for COPD, according to ROC curve analysis. Hsa_circ_0042590 showed a close second with an AUC of 0.83 and 95% CI: -0.1972--0.0739 (P <0.0001). Conclusion: This research identified a strong correlation between smoking and hsa_circ_0049875 and hsa_circ_0042590 in COPD PBMCs. The number of AEs in the preceding and succeeding years was substantially linked with the existence of hsa_circ_0042590 and hsa_circ_0049875 in COPD patients who smoke. Additionally, according to our research, hsa_circ_0049875 and hsa_circ_0042590 may be valuable biomarkers for COPD diagnosis.


Assuntos
Doença Pulmonar Obstrutiva Crônica , RNA Circular , Humanos , RNA Circular/genética , Leucócitos Mononucleares/metabolismo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Biomarcadores/metabolismo
10.
Int Arch Allergy Immunol ; : 1-10, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527438

RESUMO

INTRODUCTION: Demethylzeylasteral (T-96), a new extract of Tripterygium wilfordii Hook F, exerted immunomodulatory properties in autoimmune diseases, but its effect on airway inflammatory diseases remains unclear. Our study aims to explore the protective effect and underlying mechanism of T-96 in allergic asthma. METHODS: The OVA-induced asthmatic mice were administered by gavage with T-96 (0.1 mg/10 g, 0.3 mg/10 g, or 0.6 mg/10 g) 1 h before each challenge. The airway hyperresponsiveness was assessed, pathological changes were evaluated by HE and PAS staining, and expressions of Th2 cytokines were determined by PCR and ELISA. The activation of MAPK/ERK and NF-κB pathway was assessed by western blot. RESULTS: T-96 significantly relieved airway hyperresponsiveness in asthmatic mice, evidenced by reduced airway resistance (Raw) and increased lung compliance dynamic compliance (Cdyn). Also, enhanced inflammatory infiltration and mucus hypersecretion were ameliorated in lungs of asthmatic mice following increasing doses of T-96 treatment, accompanied by decreased eosinophils in bronchoalveolar lavage fluid (BALF), IgE and OVA-specific IgE levels in serum, and downregulated IL-5 and IL-13 expressions in BALF and lung tissues as well. Notably, phosphorylation levels of p38 MAPK, ERK, and p65 NF-κB were obviously increased in asthmatic mice compared with the control group, which were then abrogated upon T-96 treatment. CONCLUSION: This study first revealed that T-96 alleviated allergic airway inflammation and airway hyperresponsiveness via inhibiting MAPK/ERK and NF-κB pathway. Thus, T-96 could potentially act as a new anti-inflammatory agent in allergic asthma.

11.
J Am Chem Soc ; 146(12): 8641-8649, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470826

RESUMO

Renewable-energy-powered electrosynthesis has the potential to contribute to decarbonizing the production of propylene glycol, a chemical that is used currently in the manufacture of polyesters and antifreeze and has a high carbon intensity. Unfortunately, to date, the electrooxidation of propylene under ambient conditions has suffered from a wide product distribution, leading to a low faradic efficiency toward the desired propylene glycol. We undertook mechanistic investigations and found that the reconstruction of Pd to PdO occurs, followed by hydroxide formation under anodic bias. The formation of this metastable hydroxide layer arrests the progressive dissolution of Pd in a locally acidic environment, increases the activity, and steers the reaction pathway toward propylene glycol. Rh-doped Pd further improves propylene glycol selectivity. Density functional theory (DFT) suggests that the Rh dopant lowers the energy associated with the production of the final intermediate in propylene glycol formation and renders the desorption step spontaneous, a concept consistent with experimental studies. We report a 75% faradic efficiency toward propylene glycol maintained over 100 h of operation.

12.
Front Immunol ; 15: 1344805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440722

RESUMO

Background: Acute lung injury (ALI)/severe acute respiratory distress syndrome (ARDS) is a serious clinical syndrome characterized by a high mortality rate. The pathophysiological mechanisms underlying ALI/ARDS remain incompletely understood. Considering the crucial role of immune infiltration and macrophage polarization in the pathogenesis of ALI/ARDS, this study aims to identify key genes associated with both ALI/ARDS and M1 macrophage polarization, employing a combination of bioinformatics and experimental approaches. The findings could potentially reveal novel biomarkers for the diagnosis and management of ALI/ARDS. Methods: Gene expression profiles relevant to ALI were retrieved from the GEO database to identify co-upregulated differentially expressed genes (DEGs). GO and KEGG analyses facilitated functional annotation and pathway elucidation. PPI networks were constructed to identify hub genes, and differences in immune cell infiltration were subsequently examined. The expression of hub genes in M1 versus M2 macrophages was evaluated using macrophage polarization datasets. The diagnostic utility of CD274 (PD-L1) for ARDS was assessed by receiver operating characteristic (ROC) analysis in a validation dataset. Experimental confirmation was conducted using two LPS-induced M1 macrophage models and an ALI mouse model. The role of CD274 (PD-L1) in M1 macrophage polarization and associated proinflammatory cytokine production was further investigated by siRNA-mediated silencing. Results: A total of 99 co-upregulated DEGs were identified in two ALI-linked datasets. Enrichment analysis revealed that these DEGs were mainly involved in immune-inflammatory pathways. The following top 10 hub genes were identified from the PPI network: IL-6, IL-1ß, CXCL10, CD274, CCL2, TLR2, CXCL1, CCL3, IFIT1, and IFIT3. Immune infiltration analysis revealed a significantly increased abundance of M1 and M2 macrophages in lung tissue from the ALI group compared to the control group. Subsequent analysis confirmed that CD274 (PD-L1), a key immunological checkpoint molecule, was highly expressed within M1 macrophages. ROC analysis validated CD274 (PD-L1) as a promising biomarker for the diagnosis of ARDS. Both in vitro and in vivo experiments supported the bioinformatics analysis and confirmed that the JAK-STAT3 pathway promotes CD274 (PD-L1) expression on M1 macrophages. Importantly, knockdown of CD274 (PD-L1) expression potentiated M1 macrophage polarization and enhanced proinflammatory cytokines production. Conclusion: This study demonstrates a significant correlation between CD274 (PD-L1) and M1 macrophages in ALI/ARDS. CD274 (PD-L1) functions as a negative regulator of M1 polarization and the secretion of proinflammatory cytokines in macrophages. These findings suggest potential new targets for the diagnosis and treatment of ALI/ARDS.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Camundongos , Antígeno B7-H1 , Biologia Computacional , Citocinas
13.
Sci Rep ; 14(1): 6508, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499651

RESUMO

Chronic obstructive pulmonary disease (COPD) combined with malnutrition results in decreased exercise capacity and a worse quality of life. We aimed to develop an observational case-control study to explore the effective and convenient method to identify potential individuals is lacking. This study included data from 251 patients with COPD and 85 participants in the control group. Parameters and body composition were compared between groups, and among patients with varied severity. The LASSO approach was employed to select the features for fitting a logistic model to predict the risk of malnutrition in patients with stable COPD. Patients with COPD exhibited significantly lower 6-min walk distance (6MWD), handgrip strength, fat-free mass index (FFMI), skeletal muscle mass (SMM) and protein. The significant predictors identified following LASSO selection included 6MWD, waist-to-hip ratio (WHR), GOLD grades, the COPD Assessment Test (CAT) score, and the prevalence of acute exacerbations. The risk score model yielded good accuracy (C-index, 0.866 [95% CI 0.824-0.909]) and calibration (Brier score = 0.150). After internal validation, the adjusted C-index and Brier score were 0.849, and 0.165, respectively. This model may provide primary physicians with a simple scoring system to identify malnourished patients with COPD and develop appropriate rehabilitation interventions.


Assuntos
Desnutrição , Doença Pulmonar Obstrutiva Crônica , Humanos , Força da Mão , Qualidade de Vida , Estudos de Casos e Controles , Doença Pulmonar Obstrutiva Crônica/complicações , Desnutrição/diagnóstico , Desnutrição/epidemiologia
14.
Food Chem ; 447: 138916, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461723

RESUMO

As one of the most abundant plant polyphenols in the human diet, (-)-epicatechin (EC) can improve insulin sensitivity and regulate glucose homeostasis. However, the primary mechanisms involved in EC anti-T2DM benefits remain unclear. The present study explored the effects of EC on the gut microbiota and liver transcriptome in type 2 diabetes mellitus (T2DM) Goto-Kakizaki rats for the first time. The findings showed that EC protected glucose homeostasis, alleviated systemic oxidative stress, relieved liver damage, and increased serum insulin. Further investigation showed that EC reshaped gut microbiota structure, including inhibiting the proliferation of lipopolysaccharide (LPS)-producing bacteria and reducing serum LPS. In addition, transcriptome analysis revealed that the insulin signaling pathway may be the core pathway of the EC anti-T2DM effect. Therefore, EC may modulate the gut microbiota and liver insulin signaling pathways by the gut-liver axis to alleviate T2DM. As a diet supplement, EC has promising potential in T2DM prevention and treatment.


Assuntos
Catequina , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratos , Humanos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Catequina/metabolismo , Lipopolissacarídeos/farmacologia , Glicemia/metabolismo , Insulina , Fígado/metabolismo
15.
BMC Pulm Med ; 24(1): 144, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509541

RESUMO

BACKGROUND: The causality of the relationship between bronchiectasis and chronic obstructive pulmonary disease (COPD) remains unclear. This study aims to investigate the potential causal relationship between them, with a specific focus on the role of airway inflammation, infections, smoking as the mediators in the development of COPD. METHODS: We conducted a two-sample Mendelian randomization (MR) analysis to assess: (1) the causal impact of bronchiectasis on COPD, sex, smoking status, infections, eosinophil and neutrophil counts, as well as the causal impact of COPD on bronchiectasis; (2) the causal effect of smoking status, infections and neutrophil counts on COPD; and (3) the extent to which the smoking status, infections and neutrophil counts might mediate any influence of bronchiectasis on the development of COPD. RESULTS: COPD was associated with a higher risk of bronchiectasis (OR 1.28 [95% CI 1.05, 1.56]). Bronchiectasis was associated with a higher risk of COPD (OR 1.08 [95% CI 1.04, 1.13]), higher levels of neutrophil (OR 1.01 [95% CI 1.00, 1.01]), higher risk of respiratory infections (OR 1.04 [95% CI 1.02, 1.06]) and lower risk of smoking. The causal associations of higher neutrophil cells, respiratory infections and smoking with higher COPD risk remained after performing sensitivity analyses that considered different models of horizontal pleiotropy, with OR 1.17, 1.69 and 95.13, respectively. The bronchiectasis-COPD effect was 0.99, 0.85 and 122.79 with genetic adjustment for neutrophils, respiratory infections and smoking. CONCLUSION: COPD and bronchiectasis are mutually causal. And increased neutrophil cell count and respiratory infections appears to mediate much of the effect of bronchiectasis on COPD.


Assuntos
Bronquiectasia , Doença Pulmonar Obstrutiva Crônica , Infecções Respiratórias , Humanos , Neutrófilos , Fumar/efeitos adversos , Fumar/epidemiologia , Análise da Randomização Mendeliana , Bronquiectasia/complicações , Infecções Respiratórias/complicações , Estudo de Associação Genômica Ampla
16.
J Agric Food Chem ; 72(8): 4464-4475, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376143

RESUMO

Theobromine is an important quality component in tea plants (Camellia sinensis), which is produced from 7-methylxanthine by theobromine synthase (CsTbS), the key rate-limiting enzyme in theobromine biosynthetic pathway. Our transcriptomics and widely targeted metabolomics analyses suggested that CsMYB114 acted as a potential hub gene involved in the regulation of theobromine biosynthesis. The inhibition of CsMYB114 expression using antisense oligonucleotides (ASO) led to a 70.21% reduction of theobromine level in leaves of the tea plant, which verified the involvement of CsMYB114 in theobromine biosynthesis. Furthermore, we found that CsMYB114 was located in the nucleus of the cells and showed the characteristic of a transcription factor. The dual luciferase analysis, a yeast one-hybrid assay, and an electrophoretic mobility shift assay (EMSA) showed that CsMYB114 activated the transcription of CsTbS, through binding to CsTbS promoter. In addition, a microRNA, miR828a, was identified that directly cleaved the mRNA of CsMYB114. Therefore, we conclude that CsMYB114, as a transcription factor of CsTbS, promotes the production of theobromine, which is inhibited by miR828a through cleaving the mRNA of CsMYB114.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Teobromina/metabolismo , Cafeína/metabolismo , Folhas de Planta/metabolismo , Chá/metabolismo , Fatores de Transcrição/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Food Res Int ; 177: 113854, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225127

RESUMO

Fu brick tea (FBT) has unique "fungal flower" aroma traits, but its source of crucial aroma compounds is still controversial. Aspergillus cristatus is the dominant fungus that participated in the fermentation of FBT. In this study, volatiles of Aspergillus cristatus and corresponding fermented FBT were examined using GC × GC-Q-TOFMS. A total of 59 volatiles were shared by three strains of Aspergillus cristatus isolated from representative FBT. Among them, 1-octen-3-ol and 3-octanone were the most abundant. A total of 133 volatiles were screened as typical FBT volatiles from three FBTs fermented by the corresponding fungi. Aspergillus cristatus and FBT had only 29 coexisting volatiles, indicating that the volatiles of Aspergillus cristatus could not directly contribute to the aroma of FBT. The results of no significant correlation between volatile content in FBT and volatile content in Aspergillus cristatus suggested that intracellular metabolism of Aspergillus cristatus was not a direct driver of FBT aroma formation. Metabolic pathway analysis and proteomic analysis showed that the aroma in FBT was mainly formed by the enzymatic reaction of extracellular enzymes from Aspergillus cristatus. This study enriched our understanding of Aspergillus cristatus in the aroma formation process of FBT.


Assuntos
Proteômica , Chá , Fermentação , Chá/metabolismo , Aspergillus/metabolismo
19.
Nat Commun ; 15(1): 616, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242870

RESUMO

Electrosynthesis of acetate from CO offers the prospect of a low-carbon-intensity route to this valuable chemical--but only once sufficient selectivity, reaction rate and stability are realized. It is a high priority to achieve the protonation of the relevant intermediates in a controlled fashion, and to achieve this while suppressing the competing hydrogen evolution reaction (HER) and while steering multicarbon (C2+) products to a single valuable product--an example of which is acetate. Here we report interface engineering to achieve solid/liquid/gas triple-phase interface regulation, and we find that it leads to site-selective protonation of intermediates and the preferential stabilization of the ketene intermediates: this, we find, leads to improved selectivity and energy efficiency toward acetate. Once we further tune the catalyst composition and also optimize for interfacial water management, we achieve a cadmium-copper catalyst that shows an acetate Faradaic efficiency (FE) of 75% with ultralow HER (<0.2% H2 FE) at 150 mA cm-2. We develop a high-pressure membrane electrode assembly system to increase CO coverage by controlling gas reactant distribution and achieve 86% acetate FE simultaneous with an acetate full-cell energy efficiency (EE) of 32%, the highest energy efficiency reported in direct acetate electrosynthesis.

20.
Nat Commun ; 15(1): 359, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191599

RESUMO

The Sabatier principle is widely explored in heterogeneous catalysis, graphically depicted in volcano plots. The most desirable activity is located at the peak of the volcano, and further advances in activity past this optimum are possible by designing a catalyst that circumvents the limitation entailed by the Sabatier principle. Herein, by density functional theory calculations, we discovered an unusual Sabatier principle on high entropy alloy (HEA) surface, distinguishing the "just right" (ΔGH* = 0 eV) in the Sabatier principle of hydrogen evolution reaction (HER). A new descriptor was proposed to design HEA catalysts for HER. As a proof-of-concept, the synthesized PtFeCoNiCu HEA catalyst endows a high catalytic performance for HER with an overpotential of 10.8 mV at -10 mA cm-2 and 4.6 times higher intrinsic activity over the state-of-the-art Pt/C. Moreover, the unusual Sabatier principle on HEA catalysts can be extended to other catalytic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...