Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Org Chem ; 88(13): 7998-8009, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279456

RESUMO

An unexpected Ugi cascade reaction was developed for the facile construction of γ-lactam-fused pyridone derivatives with high tolerance of substrates. A C(sp3)-N bond and a C(sp2)-C(sp2) bond were formed together, accompanied by a chromone ring-opening in Ugi adducts, under the basic conditions without any metal catalyst for the whole process. Screening data of several difficult-to-inhibit cancer cell lines demonstrated that 7l displayed a high cytotoxicity against HCT116 cells (IC50 = 5.59 ± 0.78 µM). Taken together, our findings revealed new insights into the molecular mechanisms underlying compound 7l and provided potential usage of this scaffold for cancer therapeutics.


Assuntos
Compostos Heterocíclicos , Lactamas , Lactamas/farmacologia , Piridonas/farmacologia , Piridonas/química , Metais
2.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049976

RESUMO

Colorectal cancer (CRC) is the most common intestinal malignancy, and nearly 70% of patients with this cancer develop metastatic disease. In the present study, we synthesized a novel compound, termed N-(3-(5,7-dimethylbenzo [d]oxazol-2-yl)phenyl)-5-nitrofuran-2-carboxamide (compound 275#), and found that it exhibits antiproliferative capability in suppressing the proliferation and growth of CRC cell lines. Furthermore, compound 275# triggered caspase 3-mediated intrinsic apoptosis of mitochondria and autophagy initiation. An investigation of the molecular mechanisms demonstrated that compound 275# induced intrinsic apoptosis, and autophagy initiation was largely mediated by increasing the levels of the intracellular accumulation of reactive oxygen species (ROS) in CRC cells. Taken together, these data suggest that ROS accumulation after treatment with compound 275# leads to mitochondria-mediated apoptosis and autophagy activation, highlighting the potential of compound 275# as a novel therapeutic agent for the treatment of CRC.


Assuntos
Apoptose , Neoplasias Colorretais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Autofagia , Neoplasias Colorretais/patologia , Proliferação de Células
3.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838936

RESUMO

In this study, 2-benzyl-10a-(1H-pyrrol-2-yl)-2,3-dihydropyrazino[1,2-a]indole-1,4,10(10aH)-trione (DHPITO), a previously identified inhibitor against hepatocellular carcinoma cells, is shown to exert its cytotoxic effects by suppressing the proliferation and growth of CRC cells. An investigation of its molecular mechanism confirmed that the cytotoxic activity of DHPITO is mediated through the targeting of microtubules with the promotion of subsequent microtubule polymerisation. With its microtubule-stabilising ability, DHPITO also consistently arrested the cell cycle of the CRC cells at the G2/M phase by promoting the phosphorylation of histone 3 and the accumulation of EB1 at the cell equator, reduced the levels of CRC cell migration and invasion, and induced cellular apoptosis. Furthermore, the compound could suppress both tumour size and tumour weight in a CRC xenograft model without any obvious side effects. Taken together, the findings of the present study reveal the antiproliferative and antitumour mechanisms through which DHPITO exerts its activity, indicating its potential as a putative chemotherapeutic agent and lead compound with a novel structure.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Pontos de Checagem do Ciclo Celular , Apoptose , Moduladores de Tubulina/farmacologia , Microtúbulos , Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Proliferação de Células
5.
RSC Adv ; 12(51): 33175-33179, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425196

RESUMO

We report a "green chemistry"-based Ugi cascade reaction to furnish a series of 2,5-diketopiperazines (through nucleophilic attack of amides upon ketones in Ugi adducts) at moderate-to-good yields. Investigation with the MTT assay revealed compound (±) 5c to exhibit potent anticancer activities against acute myeloid leukaemia (MV411; IC50 = 1.7 µM) and acute T lymphocyte leukaemia (Jurkat; IC50 = 5.7 µM) cell lines.

6.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835640

RESUMO

Mitochondria, as the powerhouse of most cells, are not only responsible for the generation of adenosine triphosphate (ATP) but also play a decisive role in the regulation of apoptotic cell death, especially of cancer cells. Safe potential delivery systems which can achieve organelle-targeted therapy are urgently required. In this study, for effective pancreatic cancer therapy, a novel mitochondria-targeted and ROS-triggered drug delivery nanoplatform was developed from the TPP-TK-CPI-613 (TTCI) prodrug, in which the ROS-cleave thioketal functions as a linker connecting mitochondrial targeting ligand TPP and anti-mitochondrial metabolism agent CPI-613. DSPE-PEG2000 was added as an assistant component to increase accumulation in the tumor via the EPR effect. This new nanoplatform showed effective mitochondrial targeting, ROS-cleaving capability, and robust therapeutic performances. With active mitochondrial targeting, the formulated nanoparticles (TTCI NPs) demonstrate much higher accumulation in mitochondria, facilitating the targeted delivery of CPI-613 to its acting site. The results of in vitro antitumor activity and cell apoptosis revealed that the IC50 values of TTCI NPs in three types of pancreatic cancer cells were around 20~30 µM, which was far lower than those of CPI-613 (200 µM); 50 µM TTCI NPs showed an increase in apoptosis of up to 97.3% in BxPC3 cells. Therefore, this mitochondria-targeted prodrug nanoparticle platform provides a potential strategy for developing safe, targeting and efficient drug delivery systems for pancreatic cancer therapy.

7.
Biol Res ; 54(1): 27, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488902

RESUMO

BACKGROUND: Demethylzeylasteral (T-96) is a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF) that has been reported to exhibit anti-neoplastic effects against several types of cancer cells. However, the potential anti-tumour effects of T-96 against human Prostate cancer (CaP) cells and the possible underlying mechanisms have not been well studied. RESULTS: In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Mechanistically, T-96 promoted the initiation of autophagy but inhibited autophagic flux by inducing ROS-mediated endoplasmic reticulum (ER) stress which subsequently activated the extrinsic apoptosis pathway in CaP cells. These findings implied that T-96-induced ER stress activated the caspase-dependent apoptosis pathway to inhibit proliferation of CaP cells. Moreover, we observed that T-96 enhances the sensitivity of CaP cells to the chemotherapeutic drug, cisplatin. CONCLUSIONS: Taken together, our data demonstrated that T-96 is a novel modulator of ER stress and autophagy, and has potential therapeutic applications against CaP in the clinic.


Assuntos
Autofagia , Neoplasias da Próstata , Apoptose , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio , Triterpenos
8.
Oncol Lett ; 21(6): 433, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33868471

RESUMO

Contactin-1 (CNTN1), a neuronal cell adhesion molecular, functions in nervous system development and has been associated with carcinogenesis and tumor progression. To investigate the role of CNTN1 in gefitinib resistance in lung adenocarcinoma, lentivirus-mediated short hairpin (sh)RNA was used to silence CNTN1 and its physiological function was analyzed in the A549 cell line. A cell cytotoxicity assay revealed that CNTN1 knockdown enhanced gefitinib sensitivity in the A549 cells. In addition, CNTN1 knockdown, together with gefitinib treatment, resulted in a significant inhibition of colony formation and migration, and promotion of apoptosis. Furthermore, CNTN1 knockdown also reversed the epithelial-mesenchymal transition (EMT) phenotype by increasing E-cadherin protein expression level, and decreasing N-cadherin and vimentin protein expression levels. The PI3K/Akt signaling pathway was also association with the effects of CNTN1 on EMT progression and gefitinib resistance in the A549 cells. Collectively, knockdown of CNTN1 reversed the EMT phenotype and enhanced gefitinib sensitivity in the A549 cells by inhibiting the activation of the PI3K/Akt signaling pathway. These results suggested that CNTN1 may represent a potential therapeutic target for reserving EGFR-tyrosine kinase inhibitor resistance in non-small cell lung cancer.

9.
Oncol Rep ; 45(3): 1261-1272, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33469671

RESUMO

Glioblastoma (GBM) is an aggressive malignancy with a high rate of tumor recurrence after treatment with conventional therapies. Parthenolide (PTL), a sesquiterpene lactone extracted from the herb Tanacetum parthenium or feverfew, possesses anticancer properties against a wide variety of solid tumors. In the present study, a series of PTL derivatives were synthesized and screened. An inhibitor, dimethylaminoparthenolide (DMAPT)­D6, a derivative of the PTL prodrug DMAPT in which the hydrogen of the dimethylamino group is substituted for the isotope deuterium, induced significant cytotoxicity in GBM cells in vitro and induced cell cycle arrest at the S­phase in a dose­dependent manner. Furthermore, mechanistic investigation indicated that through increasing the levels of intracellular accumulation of reactive oxygen species (ROS), DMAPT­D6 triggered DNA damage and finally death receptor­mediated extrinsic apoptosis in GBM cells, suggesting that DNA damage induced by DMAPT­D6 initiated caspase­dependent apoptosis to remove damaged GBM cells. Taken together, these data suggested that ROS accumulation following treatment with DMAPT­D6 results in DNA damage, and thus, death­receptor­mediated apoptosis, highlighting the potential of DMAPT­D6 as a novel therapeutic agent for the treatment of GBM.


Assuntos
Dano ao DNA/efeitos dos fármacos , Deutério/administração & dosagem , Glioblastoma/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Deutério/química , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Receptores de Morte Celular/metabolismo , Sesquiterpenos/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Biol. Res ; 54: 27-27, 2021. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1505815

RESUMO

BACKGROUND: Demethylzeylasteral (T-96) is a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF) that has been reported to exhibit anti-neoplastic effects against several types of cancer cells. However, the potential anti-tumour effects of T-96 against human Prostate cancer (CaP) cells and the possible underlying mechanisms have not been well studied. RESULTS: In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Mechanistically, T-96 promoted the initiation of autophagy but inhibited autophagic flux by inducing ROS-mediated endoplasmic reticulum (ER) stress which subsequently activated the extrinsic apoptosis pathway in CaP cells. These findings implied that T-96-induced ER stress activated the caspase-dependent apoptosis pathway to inhibit proliferation of CaP cells. Moreover, we observed that T-96 enhances the sensitivity of CaP cells to the chemotherapeutic drug, cisplatin. CONCLUSIONS: Taken together, our data demonstrated that T-96 is a novel modulator of ER stress and autophagy, and has potential therapeutic applications against CaP in the clinic.


Assuntos
Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Autofagia , Triterpenos , Espécies Reativas de Oxigênio , Apoptose , Linhagem Celular Tumoral
11.
Onco Targets Ther ; 13: 10111-10121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116593

RESUMO

BACKGROUND: Breast cancer exhibits poor prognosis and high relapse rates following chemotherapy therapeutics. Thus, this study aims to develop effective novel agents regulating the core molecular pathway of breast cancer such as Wnt/ß-catenin signaling. METHODS: The present study screened a novel inhibitor, called "C188", using MTT assay. The molecular formula of C188 is C21H15FN4O3 and the molecular weight is 390. Flow cytometry and Western blotting were employed to assess cell cycle arrest after treatment with C188. Wound-healing and transwell assays were applied to measure the cell migration and invasion viability. The regulatory effects of C188 on Wnt/ß­catenin signaling and localization of ß­catenin in the nucleus were investigated by Western blotting and immunofluorescence. RESULTS: We found that C188 significantly suppressed proliferation and growth in a dose- and time-dependent manner in breast cancer cells, but not in normal breast cells. The inhibitory effect was caused by cell cycle arrest at the G1-phase which is induced by C188 treatment. Additionally, C188 dramatically inhibited cell migration of breast cancer cells in a dose-dependent manner. The migration inhibition was attributed to the suppression of Wnt/ß­catenin signaling and localization of ß­catenin in the nucleus mediated by regulating phosphorylation of ß­catenin and its subsequent stability. Furthermore, the target genes, including Axin 2, c-JUN, and c-Myc, were downregulated due to the decrease of ß­catenin in the nucleus after exposure to C188. CONCLUSION: C188 treatment resulted in the downregulation of cyclin D which led to cell cycle arrest at the G1 phase, and the inhibition of cell migration, indicating that C188 may be an effective novel therapeutic candidate as a potential treatment for human breast cancer.

12.
J Org Chem ; 84(19): 12632-12638, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31357859

RESUMO

A facile and metal-free one-pot protocol for the synthesis of fused imidazopyridine scaffolds has been developed. This novel protocol combines the Groebke-Blackburn-Bienaymé reaction (GBBR) with a sequential TBAB-mediated cyclization cascade. Biological evaluation demonstrated that compound 6a inhibits human prostate cancer cell DU-145 proliferation with an IC50 of 1.6 µM. The molecular mechanism study indicates that 6a significantly suppresses the oncogenic Erk kinase phosphorylation at 3 µM.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Piridinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Ciclização , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Micro-Ondas , Modelos Moleculares , Estrutura Molecular , Piridinas/química , Compostos de Amônio Quaternário/química
13.
Molecules ; 24(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357480

RESUMO

We have previously shown that compound-7g inhibits colorectal cancer cell proliferation and survival by inducing cell cycle arrest and PI3K/AKT/mTOR pathway blockage. However, whether it has the ability to exert antitumor activity in other cancer cells and what is the exact molecular mechanism for its antiproliferation effect remained to be determined. In the present study, compound-7g exhibited strong activity in suppressing proliferation and growth of glioblastoma cells. The inhibitor selectively downregulated F-box protein SKP2 expression and upregulated cell cycle inhibitor p27, and then resulted in G1 cell cycle arrest. Mechanism analysis revealed that compound-7g also provokes the down-regulation of E2F-1, which acts as a transcriptional factor of SKP2. Further results indicated that compound-7g induced an increase of LC3B-II and p62, which causes a suppression of fusion between autophagosome and lysosome. Moreover, compound-7g mediated autophagic flux blockage promoted accumulation of ubiquitinated proteins and then led to endoplasmic reticulum stress. Our study thus demonstrated that pharmacological inactivation of E2F-1-SKP2-p27 axis is a promising target for restricting cancer progression.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/química , Isoquinolinas/química , Proteínas Quinases Associadas a Fase S/genética , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Transcrição E2F1/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...