Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Food Chem Toxicol ; 186: 114557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432439

RESUMO

Deoxynivalenol (DON) as a mycotoxin was commonly found in food and cereals which can affect immune function and inflammatory response. The majority of foods contain DON at levels below the official limit. This study aimed to evaluate the effects of non-cytotoxic concentration of DON on inflammation and its mechanisms using the IL-10 gene-silenced RAW264.7 cell model. The results showed that a non-cytotoxic concentration of DON at 25 ng/ml aggravated IL-10 knockdown-induced inflammation, which was manifested by increasing IL-1ß and TNF-α mRNA expression, migration and phagocytosis, decreasing IL-10 mRNA expression, and enhancing JAK2/STAT3 phosphorylation. Adding JAK2 inhibitor AG490 attenuated the aggravating effect of DON on IL-10 knockdown-induced inflammation. In conclusion, a non-cytotoxic concentration of DON enhances the inflammatory response through the JAK2/STAT3 signaling pathway when inflammation occurs in the body. These results indicated that non-cytotoxic concentrations of DON could aggravate inflammation when inflammation was induced by IL-10 knockdown, which increases vigilance against DON contamination at low concentration especially when an animal's body has inflammation.


Assuntos
Interleucina-10 , Transdução de Sinais , Camundongos , Animais , Interleucina-10/genética , Interleucina-10/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células RAW 264.7 , Inflamação/metabolismo , RNA Mensageiro/genética
2.
J Pineal Res ; 76(1): e12929, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047407

RESUMO

Cholestatic liver disease is characterized by disturbances in the intestinal microbiota and excessive accumulation of toxic bile acids (BA) in the liver. Melatonin (MT) can improve liver diseases. However, the underlying mechanism remains unclear. This study aimed to explore the mechanism of MT on hepatic BA synthesis, liver injury, and fibrosis in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed and Mdr2-/- mice. MT significantly improved hepatic injury and fibrosis with a significant decrease in hepatic BA accumulation in DDC-fed and Mdr2-/- mice. MT reprogramed gut microbiota and augmented fecal bile salt hydrolase activity, which was related to increasing intestinal BA deconjugation and fecal BA excretion in both DDC-fed and Mdr2-/- mice. MT significantly activated the intestinal farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF-15) axis and subsequently inhibited hepatic BA synthesis in DDC-fed and Mdr2-/- mice. MT failed to improve DDC-induced liver fibrosis and BA synthesis in antibiotic-treated mice. Furthermore, MT provided protection against DDC-induced liver injury and fibrosis in fecal microbiota transplantation mice. MT did not decrease liver injury and fibrosis in DDC-fed intestinal epithelial cell-specific FXR knockout mice, suggesting that the intestinal FXR mediated the anti-fibrosis effect of MT. In conclusion, MT ameliorates cholestatic liver diseases by remodeling gut microbiota and activating intestinal FXR/FGF-15 axis-mediated inhibition of hepatic BA synthesis and promotion of BA excretion in mice.


Assuntos
Colestase , Hepatopatias , Melatonina , Camundongos , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Fígado/metabolismo , Colestase/tratamento farmacológico , Colestase/metabolismo , Colestase/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Camundongos Knockout , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL
3.
J Agric Food Chem ; 71(42): 15809-15820, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843077

RESUMO

Groundwater resources are often contaminated by arsenic, which poses a serious threat to human and animal's health. Some studies have demonstrated that acute arsenic exposure could induce kidney injury because the kidney is a key target organ for toxicity, but the exact mechanism remains unclear. Hence, we investigated the effect of SIRT1-/PINK1-mediated mitophagy on NaAsO2-induced kidney injury in vivo and in vitro. In our study, NaAsO2 exposure obviously induced renal tubule injury and mitochondrial dysfunction. Meanwhile, NaAsO2 exposure could inhibit the mRNA/protein level of SIRT1 and activate the mitophagy-related mRNA/protein levels in the kidney of mice. In HK-2 cells, we also confirmed that NaAsO2-induced nephrotoxicity depended on the activation of mitophagy. Moreover, the activation of SIRT1 by resveratrol alleviated NaAsO2-induced acute kidney injury via the activation of mitophagy in vivo and in vitro. Interestingly, the inhibition of mitophagy by cyclosporin A (CsA) further exacerbated NaAsO2-induced nephrotoxicity and inflammation in HK-2 cells. Taken together, our study found that SIRT1-regulated PINK1-/Parkin-dependent mitophagy was implicated in NaAsO2-induced acute kidney injury. In addition, we confirmed that PINK1-/Parkin-dependent mitophagy played a protective role against NaAsO2-induced acute kidney injury. Therefore, activation of SIRT1 and mitophagy may represent a novel therapeutic target for the prevention and treatment of NaAsO2-induced acute renal injury.


Assuntos
Injúria Renal Aguda , Arsênio , Camundongos , Humanos , Animais , Mitofagia , Arsênio/toxicidade , Sirtuína 1/genética , Proteínas Quinases/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Ubiquitina-Proteína Ligases/genética , RNA Mensageiro
4.
J Agric Food Chem ; 71(39): 14365-14378, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37750412

RESUMO

The mycotoxin ochratoxin A (OTA) causes nephrotoxicity, hepatotoxicity, and immunotoxicity in animals and humans. The farnesoid X receptor (FXR) is a member of the NR family and is highly expressed in the kidney, which has an antilipid production function. Ferroptosis is an iron-dependent form of regulated cell death involved in several pathophysiological cell death and kidney injury. The present study aims to evaluate the role of FXR and ferroptosis in OTA-induced nephrotoxicity in mice and HK-2 cells. Results showed that OTA induced nephrotoxicity as demonstrated by inducing the histopathological lesions and neutrophil infiltration of the kidney, increasing serum BUN, CRE, and UA levels, increasing Ntn-1, Kim-1, and pro-inflammatory cytokine expression, and decreasing IL-10 expression and the cell viability of HK-2 cells. OTA treatment also induced FXR deficiency, ROS release, MDA level increase, GSH content decrease, and 4-HNE production in the kidney and HK-2 cells. OTA treatment induced ferroptosis as demonstrated by increasing labile iron pool and lipid peroxidation levels as well as Acsl4, TFR1, and HO-1 mRNA and protein levels, decreasing GPX4 and FTH mRNA and protein expressions, and inducing mitochondrial injury. The FXR activator (GW4064) rescued the accumulation of lipid peroxides, intracellular ROS, and Fe2+, inhibited ferroptosis, and alleviated OTA-induced nephrotoxicity. The ferroptosis inhibitor (Fer-1) prevented ferroptosis and attenuated nephrotoxicity. Collectively, this study elucidates that FXR played a critical role in OTA-induced nephrotoxicity via regulation of ferroptosis, which provides a novel strategy against OTA-induced nephrotoxicity.


Assuntos
Ferroptose , Humanos , Animais , Camundongos , Ferroptose/genética , Espécies Reativas de Oxigênio , Ferro , RNA Mensageiro
5.
Food Chem Toxicol ; 176: 113751, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030333

RESUMO

Aflatoxin B1 (AFB1) is one of major pollutant in food and feed worldwide. The purpose of this study is to investigate the mechanism of AFB1-induced liver injury. Our results showed that AFB1 caused hepatic bile duct proliferation, oxidative stress, inflammation and liver injury in mice. AFB1 exposure induced gut microbiota dysbiosis and reduced fecal bile salt hydrolase (BSH) activity. AFB1 exposure promoted hepatic bile acid (BA) synthesis and changed intestinal BA metabolism, especially increased intestinal conjugated bile acids levels. AFB1 exposure inhibited intestinal farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF-15) signaling. Furthermore, the mice received fecal microbiota transplantation from AFB1-treated mice induced liver injury, reduced intestinal FXR signaling and increased hepatic BA synthesis. Finally, the intestine-restricted FXR agonist treatment decreased hepatic BA synthesis, ROS level, inflammation and liver injury in AFB1-treated mice. This study suggests that modifying the gut microbiota, altering intestinal BA metabolism and/or activating intestinal FXR/FGF-15 signaling may be of value for the treatment of AFB1-induced liver disease.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Camundongos , Animais , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Ácidos e Sais Biliares/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
6.
J Agric Food Chem ; 71(9): 4144-4152, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847760

RESUMO

The etiology of inflammatory bowel diseases (IBDs) involves complex genetic and environmental factors such as mycotoxin contamination. Deoxynivalenol (DON), a well-known mycotoxin, contaminates food and feed and can induce intestinal injury and inflammatory response. The dose of DON in many foods is also below the limit, although the dose of DON exceeds the limit. The present study aims to evaluate the effects of the nontoxic dose of DON on colitis induced by dextran sodium sulfate (DSS) and the mechanism in mice. The results showed a nontoxic dose of DON at 50 µg/kg bw per day exacerbated DSS-induced colitis in mice as demonstrated by increased disease activity index, decreased colon length, increased morphological damage, decreased occludin and mucoprotein 2 expression, increased IL-1ß and TNF-α expression, and decreased IL-10 expression. DON at 50 µg/kg bw per day enhanced JAK2/STAT3 phosphorylation induced by DSS. Adding JAK2 inhibitor AG490 attenuated the aggravating effects of DON on DSS-induced colitis by reversing the morphological damage, occludin and mucoprotein 2 expression increased, IL-1ß and TNF-α expression increased, and IL-10 expression decreased. Taken together, a nontoxic dose of DON could aggravate DSS-induced colitis via the JAK2/STAT3 signaling pathway. This suggests that DON, below the standard limit dose, is also a risk for IBD and may be harmful to the health of humans and animals, which could provide the basis for establishing limits for DON.


Assuntos
Colite , Micotoxinas , Humanos , Animais , Camundongos , Interleucina-10 , Ocludina/genética , Fator de Necrose Tumoral alfa , Colite/induzido quimicamente , Colite/genética , Mucoproteínas , Janus Quinase 2/genética , Fator de Transcrição STAT3/genética
7.
Food Chem Toxicol ; 172: 113597, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36596444

RESUMO

Influenza A (H3N2) accounts for the majority of influenza worldwide and continues to challenge human health. Disturbance in the gut microbiota caused by many diseases leads to increased production of lipopolysaccharide (LPS), and LPS induces sepsis and conditions associated with local or systemic inflammation. However, to date, little attention has been paid to the potential impact of LPS on influenza A (H3N2) infection and the potential mechanism. Hence, in this study we used canine influenza A (H3N2) virus (CIV) as a model of influenza A virus to investigate the effect of low-dose of LPS on CIV replication and lung damage and explore the underlying mechanism in mice and A549 and HPAEpiC cells. The results showed that LPS (25 µg/kg) increased CIV infection and lung damage in mice, as indicated by pulmonary virus titer, viral NP levels, lung index, and pulmonary histopathology. LPS (1 µg/ml) also increased CIV replication in A549 cells as indicated by the above same parameters. Furthermore, low doses of LPS reduced CIV-induced p-mTOR protein expression and enhanced CIV-induced autophagy-related mRNA/protein expressions in vivo and in vitro. In addition, the use of the mTOR activator, MHY1485, reversed CIV-induced autophagy and CIV replication in A549 and HPAEpiC cells, respectively. siATG5 alleviated CIV replication exacerbated by LPS in the two lines. In conclusion, LPS aggravates CIV infection and lung damage via mTOR/autophagy.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Cães , Humanos , Camundongos , Autofagia , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Infecções por Orthomyxoviridae/patologia , Serina-Treonina Quinases TOR/genética
8.
Food Chem Toxicol ; 172: 113604, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36623685

RESUMO

Ochratoxin A (OTA) is a potent mycotoxin found in foods and feeds, posing a health risk to animals and humans. Biological detoxification of OTA is considered a promising method, and some bacteria and fungi which can degrade OTA are isolated. However, research on safety and alleviating toxic effects are scarce. This study aims to isolate OTA-detoxification probiotics from natural samples and evaluate their safety and protective effects in mice. Here, a new OTA-detoxification strain named Pediococcus acidilactici NJB421 (P. acidilactici NJB421) was isolated from cow manure, which exhibited a removal rate of OTA at 48.53% for 48 h. P. acidilactici NJB421 exhibited high temperature resistance, acid tolerance, 0.3% bile salt and 1.4% trypsin resistance. The safety evaluation showed that P. acidilactici NJB421 at 2 × 108 CFU/per mouse had no abnormalities in body weight, organ indices, ALT, AST and ALP activities, BUN, CRE and TP contents. And P. acidilactici NJB421 alleviated the decreases in body weight, organ indices and small intestinal length, and alleviated intestinal injury, liver injury and kidney injury. These results suggest P. acidilactici NJB421 is safe and has protection against OTA poisoning, which provides a new OTA-detoxification strain for livestock and food industries.


Assuntos
Ocratoxinas , Pediococcus acidilactici , Animais , Camundongos , Peso Corporal , Ocratoxinas/toxicidade , Ocratoxinas/metabolismo , Pediococcus/metabolismo , Pediococcus acidilactici/metabolismo
9.
Toxins (Basel) ; 15(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36668886

RESUMO

Aflatoxin B1 (AFB1), one of the most common environmental mycotoxin contaminations in food and feed, poses significant threats to human and animal health. Our previous study indicated that even non-toxic AFB1 concentrations could promote influenza virus replication and induce influenza virus-infected alveolar macrophages polarizing from M1 (immunostimulatory phenotype) to M2 (immunosuppressive phenotype) over time. However, whether AFB1 promotes influenza replication via modulating the polarization of alveolar macrophages is unknown. Here, we specifically depleted alveolar macrophages using clodronate-containing liposomes in swine influenza virus (SIV)-infected mice to explore the mechanism the promotion of SIV replication by AFB1. The results show that the depletion of alveolar macrophages significantly alleviated the AFB1-induced weight loss, inflammatory responses, and lung and immune organ damage of the SIV-infected mice after 14 days and greatly diminished the AFB1-promoted SIV replication. In contrast, the depletion of alveolar macrophages did not alleviate the AFB1-induced weight loss, and lung and immune organ damage of the SIV-infected mice after 28 days and slightly diminished the AFB1-promoted SIV replication. Collectively, the data indicate that alveolar macrophages play a crucial role the promotion of SIV infection by AFB1 in the early rather than late stage, and AFB1 can promote SIV replication by inducing alveolar macrophages to polarize towards M1 macrophages. This research provides novel targets for reducing the risk of AFB1-promoted influenza virus infection.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Humanos , Camundongos , Macrófagos Alveolares , Aflatoxina B1/toxicidade , Redução de Peso
10.
J Biochem Mol Toxicol ; 37(2): e23249, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36281498

RESUMO

Ochratoxin A (OTA) is one of the most harmful mycotoxins, which can cause multiple toxicological effects, especially nephrotoxicity in animals and humans. Taurine is an essential amino acid with various biological functions such as anti-inflammatory and anti-oxidation. However, the protective effect of taurine on OTA-induced nephrotoxicity and pyroptosis had not been reported. Our results showed that OTA exposure induced cytotoxicity and oxidative stress in PK-15 cells, including reactive oxygen species (ROS) accumulation, increased mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), and decreased mRNA levels of catalase (CAT), glutathione peroxidase 1 (GPx1), and glutathione peroxidase 4 (GPx4). In addition, OTA treatment induced pyroptosis by increasing the expressions of pyroptosis-related proteins NLRP3, GSDMD, Caspase-1 P20, ASC, Pro-caspase-1, and IL-1ß. Meanwhile, taurine could alleviate OTA-induced pyroptosis and cytotoxicity, as well as reduce ROS level, COX-2, and iNOS mRNA levels, and increase the mRNA levels of the antioxidant enzyme in PK-15 cells. Taken together, taurine alleviated OTA-induced pyroptosis in PK-15 cells by inhibiting ROS generation and altering the activity of antioxidant enzymes, thereby attenuating its nephrotoxicity.


Assuntos
Antioxidantes , Piroptose , Animais , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Taurina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Estresse Oxidativo , Caspase 1/metabolismo , RNA Mensageiro/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
11.
Toxicol Lett ; 372: 25-35, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309173

RESUMO

Currently, due to the actual contamination levels of multiple mycotoxins, the limits for a single mycotoxin may be no longer applicable. Deoxynivalenol (DON) and Fumonisin B1 (FB1) had high positive rate in grain and feed worldwide. The intestine is the first target of mycotoxins. NLRP3 plays a crucial role in the gut's defense against external stimuli, which contributes vitally to pyroptosis activation. However, whether pyroptosis is engaged in the regulation of intestinal toxicity induced by DON and FB1 remains unclear. In this study, we explored the combined toxicity of DON and FB1 on the intestine and its underlying mechanisms in vivo and in vitro. Our data demonstrated gavage with DON and FB1 led to intestinal damage and promoted the secretion of pro-inflammatory cytokines (IL-1ß, IL-18, IL-6) in mice, especially in the group exposed to both mycotoxins. Meanwhile, the expressions of pyroptosis related genes (NLRP3, ASC, caspase-1, GSDMD) were significantly increased after mycotoxins exposure. Same as in vivo, DON and FB1 promoted pyroptosis and cellular inflammatory response in IPEC-J2 cells, especially in the group exposed to both mycotoxins. In addition, the pretreatment with MCC950 and VX765, inhibitors for NLRP3 and caspase-1, abolished the expression of GSDMD and the release of pro-inflammatory factors (IL-1ß, IL-18) induced by DON and FB1 exposure in IPEC-J2 cells. Our data demonstrated that the combination of DON and FB1 exhibited a synergistic or additive effect in facilitating intestinal inflammation via pyroptosis. Our finding may contribute to improve mycotoxin limit standards in feed.


Assuntos
Interleucina-18 , Micotoxinas , Camundongos , Animais , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Micotoxinas/toxicidade , Inflamação/induzido quimicamente , Caspases
12.
J Agric Food Chem ; 71(1): 867-876, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36579420

RESUMO

Aflatoxin B1 (AFB1) is a widespread mycotoxin in food and feed. Although the liver is the main target organ of AFB1, the intestine is the first exposure organ to AFB1. However, the mechanism by which AFB1 induced intestinal barrier dysfunction via regulating the farnesoid X receptor (FXR)-mediated myosin light chain kinase (MLCK) signaling pathway has rarely been studied. In vivo, AFB1 exposure significantly decreased the small intestine length and increased the intestinal permeability. Meanwhile, AFB1 exposure markedly suppressed the protein expressions of FXR, ZO-1, occludin, and claudin-1 and enhanced the protein expression of MLCK. In vitro, AFB1 exposure induced intestinal barrier dysfunction by the elevation in the FITC-Dextran 4 kDa flux and inhibition in the transepithelial electrical resistance in a dose-dependent manner. In addition, AFB1 exposure downregulated the mRNA and protein expressions of FXR, ZO-1, occludin, and claudin-1, redistributed the ZO-1 protein, and enhanced the protein expressions of MLCK and p-MLC. However, fexaramine (Fex, FXR agonist) pretreatment markedly reversed the AFB1-induced FXR activity reduction, MLCK protein activation, and intestinal barrier impairment in vitro and in vivo. Moreover, pretreatment with the inhibition of MLCK with ML-7 significantly alleviated the AFB1-induced intestinal barrier dysfunction and tight junction disruption in vitro. In conclusion, AFB1 induced intestinal barrier impairment via regulating the FXR-mediated MLCK signaling pathway in vitro and in vivo and provided novel insights to prevent mycotoxin poisoning in the intestine.


Assuntos
Enteropatias , Quinase de Cadeia Leve de Miosina , Animais , Camundongos , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Células CACO-2 , Claudina-1/genética , Claudina-1/metabolismo , Células Epiteliais/metabolismo , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Cadeias Leves de Miosina , Quinase de Cadeia Leve de Miosina/genética , Ocludina/genética , Ocludina/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo
13.
Chem Biol Interact ; 369: 110240, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36397609

RESUMO

Fumonisin B1 (FB1) and ochratoxin A (OTA) possess nephrotoxicity to animals and widely co-exist in food and feedstuffs. FB1 rarely, while OTA often, causes toxicosis in animals. Heat shock protein 70 (Hsp70) resists lung injury induced by pneumolysin, but whether Hsp70 could remission mycotoxins-induced renal injury is still unknown. The present study aims to explore the impacts of nontoxic doses of FB1 on OTA-induced nephrotoxicity and the protective roles of Hsp70. In the mycotoxins-challenge experiment, ICR mice were co-exposed to nontoxic doses of FB1 (0, 0.2, 0.5, 1.0 mg/kg bw, IP) and toxic dose of OTA (0.4 mg/kg bw, IP) for 16 d. The results showed that the levels of BUN, Cr, MDA in serum, the Cyto C in renal tubes or glomerulus, pro-apoptosis genes and p-JNK protein expression in kidney were significantly increased. Histopathological results revealed the glomerular swelling. The above all indexes were dose-dependent. In the protection experiment, the mice were pretreated with the eukaryotic plasmid of pEGFP-C3-Hsp70, these increasing parameters in the mycotoxins-challenge experiment were reversed. In vitro, after pK-15 cells were treated with 8 µM FB1 and 5 µM OTA for 48 h, the mitochondrial membrane potential was significantly reduced, mitochondrial ROS was remarkably increased, more Cyto C was leaked from mitochondria into cytoplasm, and pro-apoptosis genes were significantly up-regulated. After the Hsp70 level was up-regulated by pEGFP-C3-Hsp70 or ML346 in pK-15 cells, these above indexes were reversed. However, activation of JNK by anisomycin significantly suppressed the protective effects of Hsp70. Our results demonstrate that the nontoxic doses of FB1 exacerbate the toxic dose of OTA-induced renal injury, while Hsp70 alleviates renal injury by inhibiting the JNK/MAPK signaling pathway. Hsp70 up-regulation may be an efficient strategy for protecting against tissue damage and bio-function impairment induced by co-exposure to FB1 and OTA.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Micotoxinas , Camundongos , Animais , Proteínas de Choque Térmico HSP70/genética , Camundongos Endogâmicos ICR , Micotoxinas/toxicidade , Rim
14.
J Agric Food Chem ; 70(43): 14005-14014, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36278938

RESUMO

Ochratoxin A (OTA) is the most common contaminant in food and feed, which causes nephrotoxicity. Studies revealed that a low level of OTA contamination could also cause physiological dysfunction. Chronic kidney disease (CKD) has become an important public health problem with increasing morbidity. However, the potential effect of nontoxic OTA on CKD remains uncertain. In this study, adriamycin (ADR) and cyclosporine A (CSA) were used to stimulate glomerular nephropathy and tubular nephropathy, respectively. Renal injury was aggravated due to OTA (0.25 mg/kg) exposure in the mouse nephropathy models, assessing by renal histomorphology and the detection of blood urea nitrogen (BUN) and serum creatine (SCr) levels. We noticed that nontoxic dosage of OTA increased the expression of fibrotic factors, α-smooth muscle actin (α-SMA), and Vimentin in a nephropathic mouse, which indicated the exacerbation of ADR/CSA-induced renal fibrosis. We conducted in vitro experiments in glomerular mesangial cells and renal tubular epithelial cells. Nontoxic concentration of OTA was found to exacerbate the cytotoxicity of ADR/CSA and intensify renal fibrosis by activating TGF-ß1/SMAD2/3. Thus, this study may provide convincing evidence for the prevention of CKD aggravation and the renewal of food hygiene standards in mycotoxin contamination.


Assuntos
Ciclosporina , Insuficiência Renal Crônica , Animais , Camundongos , Doxorrubicina , Fibrose , Fator de Crescimento Transformador beta1/metabolismo
15.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1368-1382, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36045638

RESUMO

Vitamin B12 (VB12 ) plays vital roles as a cofactor in reactions related to biosynthesis and metabolic regulation. Animals with diarrhoea from intestinal inflammation are susceptible to VB12 deficiency due to dysfunctional absorption. No current medications for canine intestinal inflammation can simultaneously act as VB12 supplements. Here we have tested a strain of VB12 -producing Lactobacillus, to investigate its safety in healthy dogs and test for hypothesized therapeutic and preventive effects on murine colitis. Results from enzyme-linked immunosorbent assay, histopathological analysis, and quantitative polymerase chain reaction showed normal physical conditions of healthy dogs given Lactobacillus, and blood biochemical indices showed no significant differences in markers, indicating safety of Lactobacillus to healthy dogs. The microbiota in animals receiving VB12 -producing Lactobacillus probiotic exhibited decreased abundance of Escherichia coli and concomitant increase in Lactobacillus. The probiotic supplement also resulted in downregulation of proinflammatory cytokines in murine colon tissues, reduced myeloperoxidase activity and malondialdehyde level, and significantly increased serum VB12 level and decreased homocysteine in therapeutic and preventive experiments. Moreover, Lactobacillus supplement decreased colonic inflammation and injury, improved gut microbiota, and ameliorated VB12 deficiency as an adjunctive therapy. We conclude this product is potentially beneficial for efficient therapy and prevention of VB12 deficiency form intestinal inflammation in canine clinical practice.


Assuntos
Colite , Doenças do Cão , Probióticos , Doenças dos Roedores , Camundongos , Cães , Animais , Lactobacillus , Colite/induzido quimicamente , Colite/veterinária , Probióticos/uso terapêutico , Inflamação/terapia , Inflamação/veterinária
16.
Environ Toxicol Pharmacol ; 95: 103973, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36096441

RESUMO

Ochratoxin A (OTA) is a mycotoxin that mainly causes nephrotoxicity. The single nephrotoxicity of OTA exposure on glomeruli or renal tubule had been well documented, however, the comparison toxicity between it is still unclear. Here, C57BL/6 mice and two types of nephrocyte were treated with concentration-gradient OTA to explore its differentiation nephrotoxicity. Results showed that OTA induced nephrotoxicity in vivo and in vitro, manifested as the deteriorative kidney function in mice and the cut-down cell viability in nephrocyte. Besides, results of murine kidney pathological section and IC50 of two types nephrocyte indicated that OTA-induced toxicity in renal tubule was higher than its in glomeruli. In addition, OTA exposure induced autophagy signaling differentiation expression. It revealed that autophagy was implicated in OTA-induced differential nephrotoxicity in glomeruli and renal tubule. Altogether, we proved that OTA induces a differentiation nephrotoxicity in glomeruli and renal tubule, and it is related to autophagy differential regulation.


Assuntos
Micotoxinas , Ocratoxinas , Animais , Autofagia , Camundongos , Camundongos Endogâmicos C57BL , Micotoxinas/toxicidade , Ocratoxinas/toxicidade
17.
J Agric Food Chem ; 70(40): 12968-12981, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166599

RESUMO

Deoxynivalenol (DON) is one of the most pervasive contaminating mycotoxins in grain, and exposure to DON is known to cause acute and chronic intestinal damage. As the gut is the most important target organ of DON, it is essential to identify the pivotal molecules involved in DON-induced enterotoxicity as well as the potential regulatory mechanisms. In the present study, we found that DON treatment dramatically decreased the jejunal villus height and increased the crypt depth in mice. DON exposure induced oxidative stress and NLRP3 inflammasome activation while increasing the levels of pyroptosis-related factors GSDMD, ASC, Caspase-1 P20, and IL-1ß and inflammatory cytokines IL-18, TNF-α, and IL-6. In vitro, 0.5-2 µM DON caused cytotoxicity and oxidative stress, as well as NLRP3-mediated pyroptosis in IPEC-J2 cells. Furthermore, DON treatment substantially improved the expression of Caveolin-1 (Cav-1) in vitro and in vivo. Interestingly, Cav-1 knockdown effectively attenuated DON-induced oxidative stress and NLRP3-mediated pyroptosis in IPEC-J2 cells. Meanwhile, treatment with the antioxidant NAC significantly alleviated DON-induced cytotoxicity and pyroptosis in IPEC-J2 cells. Likewise, after inhibiting NLRP3 inflammasome activation with the inhibitor MCC950, DON-induced cytotoxicity, pyroptosis, and inflammatory response were attenuated. However, NLRP3 inhibition did not affect Cav-1 expression. In conclusion, our study demonstrated that pyroptosis may be an underlying mechanism in DON-induced intestinal injury, and Cav-1 plays a pivotal role in DON-induced pyroptosis via regulating oxidative stress, which suggests a novel strategy to overcome DON-induced enterotoxicity.


Assuntos
Piroptose , Tricotecenos , Animais , Antioxidantes/metabolismo , Caspase 1/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Inflamassomos , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tricotecenos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
18.
Sci Total Environ ; 849: 157861, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35934034

RESUMO

Cadmium (Cd) is a widely prevalent environmental pollutant that accumulates in the liver and induces liver injury. The mechanism of Cd-induced liver injury remains elusive. Our study aimed to clarify the mechanism by which changes in the gut microbiota contribute to Cd-induced liver injury. Here, a murine model of liver injury induced by chronic Cd exposure was used. Liver injury was assessed by biochemistry and histopathology. Expression profiles of genes involved in bile acid (BA) homeostasis, inflammation and injury were assessed via Realtime-PCR and Western-blot. 16S rRNA gene sequencing and mass spectrometry-based metabolomics were used to investigate changes in the gut microbiota and its metabolites in the regulation of Cd-induced liver injury. Here, we showed that Cd exposure induced hepatic ductular proliferation, hepatocellular damage and inflammatory infiltration in mice. Cd exposure induced gut microbiota dysbiosis and reduced the fecal bile salt hydrolase activity leading to an increase of tauro-ß-muricholic acid levels in the intestine. Cd exposure decreased intestine FXR/FGF-15 signaling and promoted hepatic BA synthesis. Furthermore, the mice receiving fecal microbiota transplantation from Cd-treated mice showed reduced intestinal FXR/FGF-15 signaling, increased hepatic BA synthesis, and liver injury. However, the depletion of the commensal microbiota by antibiotics failed to change these indices in Cd-treated mice. Finally, the administration of the intestine-restricted FXR agonist fexaramine attenuated the liver injury, improved the intestinal barrier, and decreased hepatic BA synthesis in the Cd-treated mice. Our study identified a new mechanism of Cd-induced liver injury. Cd-induced gut microbiota dysbiosis, decreased feces BSH activity, and increased intestinal T-ßMCA levels led to an inhibition of intestinal FXR/FGF-15 signaling and an increase in hepatic BA synthesis, ultimately facilitating the development of hepatic ductular proliferation, inflammation, and injury in mice. This study expands our understanding of the health hazards caused by environmental Cd pollution.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Poluentes Ambientais , Microbioma Gastrointestinal , Animais , Antibacterianos/metabolismo , Ácidos e Sais Biliares/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Disbiose/induzido quimicamente , Poluentes Ambientais/metabolismo , Microbioma Gastrointestinal/fisiologia , Inflamação , Intestinos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
J Agric Food Chem ; 70(29): 9187-9200, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35830273

RESUMO

Fumonisin B1 (FB1) is a fungal metabolite, which has an incremental detection rate in grains and feed worldwide. The nucleotide-binding oligomerization domain-like pyrin domain containing protein 3 (NLRP3) inflammasome is a critical element in pyroptosis activation, which participates in regulating enteritis. Meanwhile, autophagy is also engaged in intestinal inflammation. However, the function of pyroptosis and autophagy in FB1-mediated enterotoxicity remains unclear. In this study, we explored the effects of FB1 on enteritis and the underlying mechanism in vivo and in vitro. Our data showed that FB1 exposure damaged the intestinal epithelium and promoted the secretion of inflammatory cytokines. Meanwhile, FB1 exposure significantly upregulated the expression of pyroptosis-related genes. Then, MCC950, an inhibitor of NLRP3, significantly blocked FB1-induced pyroptosis in IPEC-J2 cells. In addition, FB1 treatment elevated the levels of autophagy. Moreover, the phosphorylation of the mammalian target of rapamycin (mTOR), an upstream protein of the autophagy pathway, was inhibited by FB1 exposure. Notably, rapamycin, an inhibitor of mTOR, instead of MHY1485, an agonist of mTOR, could ameliorate FB1-induced intestinal inflammatory injury and inhibit the upregulation of pyroptosis-related genes. In summary, we demonstrated that autophagy exhibited a protective effect against NLRP3 inflammasome-dependent pyroptosis on FB1-induced enteritis. Our data clarify a favorable protective role for the activation of autophagy in FB1 poisoning.


Assuntos
Inflamassomos , Piroptose , Autofagia , Fumonisinas , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
J Pineal Res ; 73(2): e12812, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35652241

RESUMO

Aflatoxin B1 (AFB1) is a widespread contaminant in foods and feedstuffs, and its target organ is the liver. Melatonin (MT) has been shown to alleviate inflammation in organs and remodel gut microbiota in animals and humans. However, the underlying mechanism by which MT alleviates AFB1-induced liver injury remains unclear. In the present study, MT pretreatment markedly increased the expression of intestinal tight junction proteins (ZO-1, Occludin, and Claudin-1), decreased intestinal permeability, reduced production of gut-derived Lipopolysaccharide (LPS) and remodeled gut microbiota, ultimately alleviated AFB1-induced liver injury in mice. Interestingly, MT pretreatment failed to exert beneficial effects on the intestine and liver in antibiotic-treated mice. Meanwhile, MT pretreatment significantly increased the farnesoid X receptor (FXR) protein expression of ileum, and decreased the TLR4/NF-κB signaling pathway-related messenger RNA (mRNA) and proteins (TLR4, MyD88, p-p65, and p-IκBα) expression in livers of AFB1-exposed mice. Subsequently, pretreatment by Gly-ß-MCA, an intestine-selective FXR inhibitor, blocked the alleviating effect of MT on liver injury through increasing the liver-specific expression of TLR4/NF-κB signaling pathway-related mRNA and proteins (TLR4, MyD88, p-p65, and p-IκBα). In conclusion, MT pretreatment ameliorated AFB1-induced liver injury and the potential mechanism may be related to regulate gut microbiota/intestinal FXR/liver TLR4 signaling axis, which provides a strong evidence for the protection of gut-derived liver inflammation.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Melatonina , Aflatoxina B1/toxicidade , Animais , Humanos , Inflamação , Fígado/metabolismo , Melatonina/farmacologia , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...