Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Biomedicines ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672262

RESUMO

Methotrexate (MTX) is an essential part of therapy in the treatment of acute lymphoblastic leukemia (ALL) in children, and inferior intellectual outcomes have been reported in children who are leukemia survivors. Although several studies have demonstrated that the interaction between gut microbiota changes and the brain plays a vital role in the pathogenesis of chemotherapy-induced brain injury, preexisting studies on the effect of MTX on gut microbiota changes focused on gastrointestinal toxicity only. Based on our previous studies, which revealed that MTX treatment resulted in inferior neurocognitive function in developing young rats, we built a young rat model mimicking MTX treatment in a child ALL protocol, trying to investigate the interactions between the gut and brain in response to MTX treatment. We found an association between gut microbiota changes and neurogenesis/repair processes in response to MTX treatment, which suggest that MTX treatment results in gut dysbiosis, which is considered to be related to MTX neurotoxicity through an alteration in gut-brain axis communication.

2.
Pharmaceuticals (Basel) ; 16(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37375772

RESUMO

Endothelial dysfunction is characterized by disturbances in nitric oxide (NO) bioavailability and increased circulating asymmetric dimethylarginine (ADMA) due to the enormous release of free radicals. Increased circulating ADMA may cause endothelial dysfunction and a variety of clinical disorders, such as liver and kidney disease. Young male Sprague-Dawley rats at postnatal day 17 ± 1 received continuous ADMA infusion via an intraperitoneal pump to induce endothelial dysfunction. Four groups of rats (n = 10 per group) were allocated: control, control and resveratrol, ADMA infusion, and ADMA infusion and resveratrol groups. Spatial memory, NLR family pyrin-domain-containing 3 (NLRP3) inflammasome, cytokine expression, tight junction proteins in the ileum and dorsal hippocampus, and microbiota composition were examined. We found cognitive deficits; increased NLRP3 inflammasome in the plasma, ileum, and dorsal hippocampus; decreased ileum and dorsal hippocampal cytokine activation and tight junction proteins; and microbiota composition alterations in the ADMA-infusion young male rats. Resveratrol had beneficial effects in this context. In conclusion, we observed NLRP3 inflammasome activation in peripheral and central dysbiosis in young male rats with increased circulating ADMA, and found that resveratrol had beneficial effects. Our work adds to the mounting evidence that inhibiting systemic inflammation is a promising therapeutic avenue for cognition impairment, probably via the gut-brain axis.

3.
J Biochem Mol Toxicol ; 37(5): e23323, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36890697

RESUMO

With the improvement in children's acute lymphoblastic leukemia (ALL) care, the survival rate in children ALL has improved much. Methotrexate (MTX) plays an essential role in the success of children's ALL treatment. Since hepatotoxicity is commonly reported in individuals treated with intravenous or oral MTX, our study further examined the hepatic effect following intrathecal MTX treatment, which is an essential treatment for leukemia patients. Specifically, we examined the pathogenesis of MTX hepatotoxicity in young rats and explored the impact of melatonin treatment in protection against MTX hepatotoxicity. Successfully, we found that melatonin was able to protect against MTX hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Melatonina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Ratos , Animais , Metotrexato/toxicidade , Melatonina/farmacologia , Melatonina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
4.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430717

RESUMO

Maternal high-fat (HF) diet exposure in utero may affect fetal development and cause metabolic problems throughout life due to lipid dysmetabolism and oxidative damage. Metformin has been suggested as a potential treatment for body weight reduction and nonalcoholic fatty liver disease, but its reprogramming effect on offspring is undetermined. This study assesses the effects of maternal metformin treatment on hepatic steatosis in offspring caused by maternal HF diet. Female rats were fed either a control or an HF diet before conception, with or without metformin treatment during gestation, and placenta and fetal liver tissues were collected. In another experiment, the offspring were fed a control diet until 120 d (adult stage). Metformin treatment during pregnancy ameliorates placental oxidative stress and enhances placental glucose transporter 1 (GLUT1), GLUT3, and GLUT4 expression levels through 5' adenosine monophosphate-activated protein kinase (AMPK) activation. Maternal metformin treatment was shown to reprogram maternal HF diet-induced changes in offspring fatty liver with the effects observed in adulthood as well. Further validation is required to develop maternal metformin therapy for clinical applications.


Assuntos
Metformina , Hepatopatia Gordurosa não Alcoólica , Feminino , Ratos , Gravidez , Animais , Dieta Hiperlipídica/efeitos adversos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Placenta/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Metformina/metabolismo , Gorduras na Dieta/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo
5.
Nutrients ; 14(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36235659

RESUMO

Metabolic disorders can start in utero. Maternal transmission of metabolic phenotypes may increase the risks of adverse metabolic outcomes, such as nonalcoholic fatty liver disease (NAFLD); effective intervention is essential to prevent this. The gut microbiome plays a crucial role in fat storage, energy metabolism, and NAFLD. We investigated the therapeutic use of probiotic Lactobacillus reuteri and postbiotic butyrate gestation in the prevention of perinatal high-fat diet-induced programmed hepatic steatosis in the offspring of pregnant Sprague-Dawley rats who received regular chow or a high-fat (HF) diet 8 weeks before mating. L. reuteri or sodium butyrate was administered via oral gavage to the gestated rats until their sacrifice on day 21 of gestation. Both treatments improved liver steatosis in pregnant dams; L. reuteri had a superior effect. L. reuteri ameliorated obesity and altered the metabolic profiles of obese gravid dams. Maternal L. reuteri therapy prevented maternal HF diet-induced fetal liver steatosis, and reformed placental remodeling and oxidative injury. Probiotic therapy can restore lipid dysmetabolism in the fetal liver, modulate nutrient-sensing molecules in the placenta, and mediate the short-chain fatty acid signaling cascade. The therapeutic effects of maternal L. reuteri on maternal NAFLD and NAFLD reprogramming in offspring should be validated for further clinical translation.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Ácido Butírico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Feminino , Feto/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Obesidade/metabolismo , Obesidade/terapia , Placenta/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955421

RESUMO

Hypertension is an important public health challenge, affecting up to 30-50% of adults worldwide. Several epidemiological studies indicate that high blood pressure originates in fetal life-the so-called programming effect or developmental origin of hypertension. Iron-deficiency anemia has become one of the most prevalent nutritional problems globally. Previous animal experiments have shown that prenatal iron-deficiency anemia adversely affects offspring hypertension. However, the underlying mechanism remains unclear. We used a maternal low-iron diet Sprague Dawley rat model to study changes in blood pressure, the renal renin-angiotensin system, oxidative stress, inflammation, and sodium transporters in adult male offspring. Our study revealed that 16-week-old male offspring born to mothers with low dietary iron throughout pregnancy and the lactation period had (1) higher blood pressure, (2) increased renal cortex angiotensin II receptor type 1 and angiotensin-converting enzyme abundance, (3) decreased renal cortex angiotensin II receptor type 2 and MAS abundance, and (4) increased renal 8-hydroxy-2'-deoxyguanosine and interleukin-6 abundance. Improving the iron status of pregnant mothers could influence the development of hypertension in their offspring.


Assuntos
Anemia Ferropriva , Hipertensão , Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Anemia Ferropriva/metabolismo , Animais , Pressão Sanguínea , Feminino , Hipertensão/metabolismo , Ferro/metabolismo , Ferro da Dieta/metabolismo , Rim/metabolismo , Lactação , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina
7.
J Nutr Biochem ; 108: 109090, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724813

RESUMO

Maternal nutrition, gut microbiome composition, and metabolites derived from gut microbiota are closely related to the development of hypertension in offspring. A plethora of metabolites generated from diverse tryptophan metabolic pathways show both beneficial and harmful effects. Butyrate, one of the short-chain fatty acids (SCFAs), has shown vasodilation effects. We examined whether sodium butyrate administration in pregnancy and lactation can prevent hypertension induced by a maternal tryptophan-free diet in adult progeny and explored the protective mechanisms. Pregnant Sprague-Dawley rats received normal chow (CN), tryptophan-free diet (TF), sodium butyrate 400 mg/kg/d in drinking water (CNSB), or TF diet plus sodium butyrate (TFSB) in pregnancy and lactation. Male offspring were sacrificed at the age of 16 weeks (n=8 per group). Compared with normal chow, offspring exposed to the maternal tryptophan-free diet had markedly increased blood pressure, associated with activation of the renin-angiotensin system (RAS). Treatment with sodium butyrate rescued maternal TF-exposed offspring from hypertension. The protective effect of sodium butyrate is related to alterations to microbiome composition, increased renal expression of SCFA receptor G protein-coupled receptor 41 (GPR41) and GPR109A, and restoration of RAS balance. In summary, these results suggest that sodium butyrate protects against maternal TF-induced offspring hypertension, likely by modulating gut microbiota, its derived metabolites, and the RAS.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Animais , Pressão Sanguínea , Ácido Butírico/farmacologia , Dieta , Feminino , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/prevenção & controle , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Ratos , Ratos Sprague-Dawley
8.
Lipids Health Dis ; 20(1): 100, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496884

RESUMO

BACKGROUND: The deleterious effect of maternal high-fat diet (HFD) on the fetal rat liver may cause later development of non-alcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the effect of maternal HFD-induced maternal hepatic steatosis and dysbiosis on the fetal liver and intestines, and the effect of prenatal metformin in a rat model. METHODS: Sprague-Dawley rats were assigned to three groups (N = 6 in each group). Before mating, the rats were randomly assigned to HFD or normal-chow diet (NCD) group for 7 weeks. After mating, the HFD group rats were continued with high-fat diet during pregnancy and some of the HFD group rats were co-treated with metformin (HFMf) via drinking water during pregnancy. All maternal rats and their fetuses were sacrificed on gestational day 21. The liver and intestinal tissues of both maternal and fetal rats were analyzed. In addition, microbial deoxyribonucleic acid extracted from the maternal fecal samples was analyzed. RESULTS: HFD resulted in maternal weight gain during pregnancy, intrahepatic lipid accumulation, and change in the serum short-chain fatty acid profile, intestinal tight junctions, and dysbiosis in maternal rats. The effect of HFD on maternal rats was alleviated by prenatal metformin, which also ameliorated inflammation and apoptosis in the fetal liver and intestines. CONCLUSIONS: This study demonstrated the beneficial effects of prenatal metformin on maternal liver steatosis, focusing on the gut-liver axis. In addition, the present study indicates that prenatal metformin could ameliorate maternal HFD-induced inflammation and apoptosis in the fetal liver and intestines. This beneficial effect of in-utero exposure of metformin on fetal liver and intestines has not been reported. This study supports the use of prenatal metformin for pregnant obese women.


Assuntos
Disbiose/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Metformina/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/tratamento farmacológico , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Água Potável/administração & dosagem , Disbiose/etiologia , Disbiose/metabolismo , Disbiose/patologia , Ácidos Graxos Voláteis/metabolismo , Feminino , Feto , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Inflamação , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Gravidez , Ratos , Ratos Sprague-Dawley , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
9.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201550

RESUMO

With the improvement of the survival rate of acute lymphoblastic leukemia (ALL) in children, some children ALL survivors reveal inferior intellectual and cognition outcome. Methotrexate (MTX), while serving as an essential component in ALL treatment, has been reported to be related to various neurologic sequelae. Using combined intrathecal (IT) and intraperitoneal (IP) MTX model, we had demonstrated impaired spatial memory function in developing rats, which can be rescued by melatonin treatment. To elucidate the impact of MTX treatment on the epigenetic modifications of the myelination process, we examined the change of neurotrophin and myelination-related transcriptomes in the present study and found combined IT and IP MTX treatment resulted in altered epigenetic modification on the myelination process, mainly in the hippocampus. Further, melatonin can restore the MTX effect through alterations of the epigenetic pathways.


Assuntos
Encéfalo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Metotrexato/toxicidade , Bainha de Mielina/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/toxicidade , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Injeções Espinhais , Masculino , Metotrexato/administração & dosagem , Metotrexato/efeitos adversos , Bainha de Mielina/patologia , Síndromes Neurotóxicas/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/genética , Ratos Sprague-Dawley , Fatores de Transcrição SOXE/genética
10.
Neuroreport ; 32(13): 1091-1099, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34284453

RESUMO

Increased plasma levels of asymmetric dimethylarginine can be encountered in chronic inflammatory disease, liver damage, renal failure, and multiple organ failure. In addition, an association between circulating asymmetric dimethylarginine levels and all-cause mortality has been reported. Male Sprague-Dawley rats, postnatal day 17 ± 1, received continuous asymmetric dimethylarginine infusion via an intraperitoneal pump. Spatial performance and dorsal hippocampal asymmetric dimethylarginine and brain-derived neurotrophic factor (BDNF) levels were examined, and the effect of resveratrol was tested. A 4-week continuous asymmetric dimethylarginine infusion in young male rats caused spatial deficits, increased asymmetric dimethylarginine levels, and decreased BDNF expression in the dorsal hippocampus. Increased oxidative stress and altered molecules in the dorsal hippocampus linked to asymmetric dimethylarginine and BDNF functions were detected. Resveratrol protected against these effects, reversing spatial deficits, and reducing the changes in the dorsal hippocampal asymmetric dimethylarginine and BDNF levels.


Assuntos
Antioxidantes/farmacologia , Arginina/análogos & derivados , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Resveratrol/farmacologia , Comportamento Espacial/efeitos dos fármacos , Animais , Arginina/metabolismo , Arginina/farmacologia , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
11.
Front Nutr ; 8: 736944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977107

RESUMO

Background: Maternal obesity in utero may affect fetal development and cause metabolic problems during childhood and even adulthood. Diet-induced maternal obesity can impair gut barrier integrity and change the gut microbiome, which may contribute to adverse placental adaptations and increase the obesity risk in offspring. However, the mechanism through which maternal obesity causes offspring metabolic disorder must be identified. Methods: Eight-week-old female rats received a control diet or high-fat (HF) diet for 11 weeks before conception and during gestation. The placentas were collected on gestational day 21 before offspring delivery. Placental tissues, gut microbiome, and short-chain fatty acids of dams and fetal liver tissues were studied. Results: Maternal HF diet and obesity altered the placental structure and metabolism-related transcriptome and decreased G protein-coupled receptor 43 expression. HF diet and obesity also changed the gut microbiome composition and serum propionate level of dams. The fetal liver exhibited steatosis, enhanced oxidative stress, and increased expression of acetyl-CoA carboxylase 1 and lipoprotein lipase with changes in maternal HF diet and obesity. Conclusions: Maternal HF diet and obesity shape gut microbiota and remodel the placenta of dams, resulting in lipid dysmetabolism of the fetal liver, which may ultimately contribute to the programming of offspring obesity.

12.
J Pediatr ; 228: 58-65.e3, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32712283

RESUMO

OBJECTIVES: To investigate the cardiovascular features and endothelium in neonates born to mothers with preeclampsia. STUDY DESIGN: In this combined observational cohort and case-control study, neonates born to mothers with normotension and mothers with preeclampsia were recruited at a neonatal intensive care unit of a tertiary medical center. Cardiovascular measurements by echocardiography and the clinical measures upon admission were analyzed. Vascular cell adhesion molecule-1 expression in umbilical arteries and in in vitro endothelial cell stimulation with plasma were examined. Continuous data were compared using nonparametric analysis, and their relationships were analyzed using linear regression. Binary logistic regression was performed in the model of adjustment of birth body weight and for multivariate analysis. RESULTS: In the cohort, almost all cardiovascular segments positively correlated to birth weight. Notably, neonates (n = 65) of mothers with preeclampsia had significantly larger coronary arteries at birth than neonates of mothers with normotension (n = 404) (median size of left main coronary artery 1.36 mm versus 1.08 mm, p <0.001; median size of right coronary artery, RCA 1.25 mm versus 1.0 mm, p <0.001). The size of the right coronary artery positively correlated to the maternal antepartum diastolic blood pressure (r = 0.298, P = .018) and was associated with in-hospital death (P < .001). Meanwhile, endothelial vascular cell adhesion molecule-1 expression was significantly increased in the umbilical arteries of the preeclamptic group and following preeclamptic cord-plasma stimulation. The latter also correlated with their relative coronary sizes. CONCLUSIONS: Neonates of mothers with preeclampsia had distinctive coronary dilatation at birth. Coronary size might be useful as a severity index of neonatal endothelial inflammation as a result of maternal preeclampsia.


Assuntos
Doença da Artéria Coronariana/etiologia , Vasos Coronários/fisiopatologia , Endotélio Vascular/fisiopatologia , Inflamação/diagnóstico , Pré-Eclâmpsia/diagnóstico , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/fisiopatologia , Dilatação Patológica/diagnóstico , Dilatação Patológica/etiologia , Dilatação Patológica/fisiopatologia , Endotélio Vascular/diagnóstico por imagem , Feminino , Seguimentos , Idade Gestacional , Humanos , Recém-Nascido , Inflamação/fisiopatologia , Masculino , Gravidez , Estudos Retrospectivos
13.
Artigo em Inglês | MEDLINE | ID: mdl-33143058

RESUMO

Nutritional challenges prior to and during gestation, lactation, and early life are known to influence the lifelong health of the infant. In this editorial, I briefly discuss the 13 articles published in this Special Issue, "Maternal and Early-Life Nutrition and Health". This Special Issue discusses topics including maternal nutrition behaviors, maternal overnutrition/obesity, maternal iron deficiency, breastfeeding, and others. This issue paves the way to better understand perinatal nutrition and how it can impact maternal and offspring health.


Assuntos
Fenômenos Fisiológicos da Nutrição do Lactente , Fenômenos Fisiológicos da Nutrição Materna , Estado Nutricional , Fenômenos Fisiológicos da Nutrição Pré-Natal , Adulto , Aleitamento Materno , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Lactação , Hipernutrição , Gravidez
14.
Molecules ; 25(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937766

RESUMO

To facilitate broad applications and enhance bioactivity, resveratrol was esterified to resveratrol butyrate esters (RBE). Esterification with butyric acid was conducted by the Steglich esterification method at room temperature with N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and 4-dimethyl aminopyridine (DMAP). Our experiments demonstrated the synthesis of RBE through EDC- and DMAP-facilitated esterification was successful and that the FTIR spectra of RBE revealed absorption (1751 cm-1) in the ester region. 13C-NMR spectrum of RBE showed a peak at 171 ppm corresponding to the ester group and peaks between 1700 and 1600 cm-1 in the FTIR spectra. RBE treatment (25 or 50 µM) decreased oleic acid-induced lipid accumulation in HepG2 cells. This effect was stronger than that of resveratrol and mediated through the downregulation of p-ACC and SREBP-2 expression. This is the first study demonstrating RBE could be synthesized by the Steglich method and that resulting RBE could inhibit lipid accumulation in HepG2 cells. These results suggest that RBE could potentially serve as functional food ingredients and supplements for health promotion.


Assuntos
Ácido Butírico/síntese química , Ésteres/síntese química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Resveratrol/síntese química , Resveratrol/farmacologia , Acetil-CoA Carboxilase/metabolismo , Carbodi-Imidas/química , Técnicas de Cultura de Células , Regulação para Baixo , Esterificação , Células Hep G2 , Humanos , Lipídeos/química , Espectroscopia de Ressonância Magnética , Piridinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Termogravimetria
15.
Artigo em Inglês | MEDLINE | ID: mdl-32825437

RESUMO

Iron is an essential micronutrient for the brain development of the fetus. Altered intestinal microbiota might affect behavior and cognition through the so-called microbiota-gut-brain axis. We used a Sprague-Dawley rat model of a maternal low-iron diet to explore the changes in cognition, dorsal hippocampal brain-derived neurotrophic factor (BDNF) and related pathways, gut microbiota, and related metabolites in adult male offspring. We established maternal iron-deficient rats by feeding them a low-iron diet (2.9 mg/kg), while the control rats were fed a standard diet (52.3 mg/kg). We used a Morris water maze test to assess spatial learning and long-term memory. Western blot (WB) assays and a quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to detect the BDNF concentration and related signaling pathways. We collected fecal samples for microbiota profiling and measured the concentrations of plasma short-chain fatty acids. The adult male offspring of maternal rats fed low-iron diets before pregnancy, during pregnancy and throughout the lactation period had (1) spatial deficits, (2) a decreased BDNF mRNA expression and protein concentrations, accompanied by a decreased TrkB protein abundance, (3) a decreased plasma acetate concentration, and (4) an enrichment of the Bacteroidaceae genus Bacteroides and Lachnospiraceae genus Marvinbryantia. Maternal iron deficiency leads to an offspring spatial deficit and is associated with alternations in gastrointestinal microbiota and metabolites.


Assuntos
Anemia Ferropriva , Fator Neurotrófico Derivado do Encéfalo , Cognição , Microbioma Gastrointestinal , Hipocampo , Efeitos Tardios da Exposição Pré-Natal , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dieta , Feminino , Hipocampo/metabolismo , Ferro , Lactação , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
16.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604820

RESUMO

Hypertension and chronic kidney disease (CKD) can originate during early-life. Tryptophan metabolites generated by different pathways have both detrimental and beneficial effects. In CKD, uremic toxins from the tryptophan-generating metabolites are endogenous ligands of the aryl hydrocarbon receptor (AHR). The interplay between AHR, nitric oxide (NO), the renin-angiotensin system (RAS), and gut microbiota is involved in the development of hypertension. We examined whether tryptophan supplementation in pregnancy can prevent hypertension and kidney disease programmed by maternal CKD in adult offspring via the aforementioned mechanisms. Sprague-Dawley (SD) female rats received regular chow or chow supplemented with 0.5% adenine for 3 weeks to induce CKD before pregnancy. Pregnant controls or CKD rats received vehicle or tryptophan 200 mg/kg per day via oral gavage during pregnancy. Male offspring were divided into four groups (n = 8/group): control, CKD, tryptophan supplementation (Trp), and CKD plus tryptophan supplementation (CKDTrp). All rats were sacrificed at the age of 12 weeks. We found maternal CKD induced hypertension in adult offspring, which tryptophan supplementation prevented. Maternal CKD-induced hypertension is related to impaired NO bioavailability and non-classical RAS axis. Maternal CKD and tryptophan supplementation differentially shaped distinct gut microbiota profile in adult offspring. The protective effect of tryptophan supplementation against maternal CKD-induced programmed hypertension is relevant to alterations to several tryptophan-metabolizing microbes and AHR signaling pathway. Our findings support interplay among tryptophan-metabolizing microbiome, AHR, NO, and the RAS in hypertension of developmental origins. Furthermore, tryptophan supplementation in pregnancy could be a potential approach to prevent hypertension programmed by maternal CKD.


Assuntos
Microbioma Gastrointestinal , Hipertensão/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Receptores de Hidrocarboneto Arílico/metabolismo , Insuficiência Renal Crônica/complicações , Triptofano/administração & dosagem , Triptofano/metabolismo , Animais , Antidepressivos de Segunda Geração/administração & dosagem , Antidepressivos de Segunda Geração/metabolismo , Suplementos Nutricionais , Feminino , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/metabolismo , Ratos , Ratos Sprague-Dawley
17.
Lipids Health Dis ; 19(1): 174, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711539

RESUMO

BACKGROUND: Maternal obesity is an emerging problem in the modern world. Growing evidence suggests that intrauterine high-fat (HF) exposure may predispose progeny to subsequent metabolic challenges. Progeny born to mothers who ate an HF diet also tends to eat an HF diet when growing and aggravate metabolic issues. Thus, the generational transmission of obesity is cyclical. Developing a strategy to prevent the occurrence of metabolic syndrome related to prenatal and/or postnatal HF diet is important. In this study, the reprogramming effects of maternal resveratrol treatment for the progeny with maternal HF/postnatal HF diets were investigated. METHODS: Sprague-Dawley dams were fed either a control or a high-fat/high sucrose diet (HFHS) from mating to lactation. After weaning, the progeny was fed chow or an HF diet. Four experimental groups were yielded: CC (maternal/postnatal control diet), HC (maternal HF/postnatal control diet), CH (maternal control/postnatal HFHS diet), and HH (maternal/postnatal HFHS diet). A fifth group (HRH) received a maternal HFHS diet plus maternal resveratrol treatment and a postnatal chow diet to study the effects of maternal resveratrol therapy. RESULTS: Maternal resveratrol treatment lessened the weight and adiposity of progeny that were programmed by combined prenatal and postnatal HFHS diets. Maternal resveratrol therapy ameliorated the decreased abundance of the sirtuin 1 (SIRT1) enzyme in retroperitoneal tissue and the altered leptin/soluble leptin receptor ratio of progeny. Maternal resveratrol therapy also decreased lipogenesis and increased lipolysis for progeny. CONCLUSIONS: Maternal resveratrol intervention can prevent adiposity programmed by maternal and postnatal HFHS diets by inducing lipid metabolic modulation. This study offers a novel reprogramming role for the effect of maternal resveratrol supplements against obesity.


Assuntos
Adiposidade/efeitos dos fármacos , Resveratrol/farmacologia , Análise de Variância , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Lactação/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Masculino , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/metabolismo
18.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408716

RESUMO

To examine the effects of maternal resveratrol in rats borne to dams with gestational high-fat diet (HFD)/obesity with or without postnatal high-fat diet. We first tested the effects of maternal resveratrol intake on placenta and male fetus brain in rats borne to dams with gestational HFD/obesity. Then, we assessed the possible priming effect of a subsequent insult, male offspring were weaned onto either a rat chow or a HFD. Spatial learning and memory were assessed by Morris water maze test. Blood pressure and peripheral insulin resistance were examined. Maternal HFD/obesity decreased adiponectin, phosphorylation alpha serine/threonine-protein kinase (pAKT), sirtuin 1 (SIRT1), and brain-derived neurotrophic factor (BDNF) in rat placenta, male fetal brain, and adult male offspring dorsal hippocampus. Maternal resveratrol treatment restored adiponectin, pAKT, and BDNF in fetal brain. It also reduced body weight, peripheral insulin resistance, increased blood pressure, and alleviated cognitive impairment in adult male offspring with combined maternal HFD and postnatal HFD. Maternal resveratrol treatment restored hippocampal pAKT and BDNF in rats with combined maternal HFD and postnatal HFD in adult male offspring dorsal hippocampus. Maternal resveratrol intake protects the fetal brain in the context of maternal HFD/obesity. It effectively reduced the synergistic effects of maternal HFD/obesity and postnatal HFD on metabolic disturbances and cognitive impairment in adult male offspring. Our data suggest that maternal resveratrol intake may serve as an effective therapeutic strategy in the context of maternal HFD/obesity.


Assuntos
Resistência à Insulina/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Obesidade/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Resveratrol/administração & dosagem , Adiponectina/metabolismo , Animais , Antioxidantes/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Obesidade/metabolismo , Placenta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Sprague-Dawley , Desmame
19.
J Food Sci ; 85(6): 1932-1938, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32449963

RESUMO

Short-chain fatty acids (SCFAs) are the main metabolites of the intestinal flora and play an important role in the interaction between the intestinal flora and host metabolism. Therefore, reliable methods are needed to accurately measure SCFAs concentrations. SCFAs are commonly analyzed by gas chromatography-mass spectrometry (GC-MS), which requires lengthy sample treatments and a long run time. This study aimed to develop a fast GC method with formic acid pretreatment for SCFAs quantification in the plasma of rat. Baseline chromatographic resolution was achieved for three SCFAs (acetic, propionic, and butyric) within an analysis time of 10.5 min. The method exhibited good recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and interday precision (<10%). We used our method to measure SCFAs levels in plasma samples from rats fed with a high fructose diet (HFD) to test the accuracy of the developed method. It was shown that SCFAs are indeed affected negatively by a HFD (60% fructose). This method was successfully employed to accurately determine SCFAs in the rat plasma with minimum sample preparation. Results showed potential damage of HFD, which produced lower SCFAs. PRACTICAL APPLICATION: Increasingly, microbiota and gut health research are being conducted by many food scientists to elucidate the relationships among the factors of food components, particularly the nondigestible carbohydrates, food processing conditions, and potential health impact. This research provides a useful, rapid, and accurate method that can save time in the analysis of short-chain fatty acids, which are commonly analyzed in gut health research.


Assuntos
Ácidos Graxos Voláteis/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Animais , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Feminino , Microbioma Gastrointestinal , Masculino , Ratos , Ratos Sprague-Dawley
20.
Lipids Health Dis ; 19(1): 105, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450865

RESUMO

BACKGROUND: Fat accumulation in the liver contributes to the development of non-alcoholic fatty liver disease (NAFLD). N-acetylcysteine (NAC) is an antioxidant, acting both directly and indirectly via upregulation of cellular antioxidants. We examined the mechanisms of liver steatosis after 12 months high fat (HF) diet and tested the ability of NAC to rescue liver steatosis. METHODS: Seven-week-old C57BL/6 (B6) male mice were administered HF diet for 12 months (HF group). Two other groups received HF diet for 12 months accompanied by NAC for 12 months (HFD + NAC(1-12)) or 6 months (HFD + NAC(1-6)). The control group was fed regular diet for 12 months (CD group). RESULTS: Liver steatosis was more pronounced in the HF group than in the CD group after 12 month feeding. NAC intake for 6 or 12 months decreased liver steatosis in comparison with HF diet (p < 0.05). Furthermore, NAC treatment also reduced cellular apoptosis and caspase-3 expression. In the unfolded protein response (UPR) pathway, the expression of ECHS1, HSP60, and HSP70 was decreased in the HFD group (p < 0.05) and rescued by NAC therapy. With regards to the endoplasmic reticulum (ER) stress, Phospho-PERK (p-PERK) and ATF4 expression was decreased in the HF group, and only the HFD + NAC(1-12), but not HFD + NAC(1-6) group, showed significant improvement. CONCLUSION: HF diet for 12 months induces significant liver steatosis via altered ER stress and UPR pathway activity, as well as liver apoptosis. NAC treatment rescues the liver steatosis and apoptosis induced by HF diet.


Assuntos
Acetilcisteína/uso terapêutico , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Resposta a Proteínas não Dobradas , Acetilcisteína/farmacologia , Fator 4 Ativador da Transcrição/genética , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose , Chaperonina 60/genética , Enoil-CoA Hidratase/genética , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Fígado/metabolismo , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...