Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1137-1143, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621960

RESUMO

The protection, development, and utilization of medicinal plant resources are important cornerstones of maintaining human health. However, due to factors such as the reduction of high-quality land resources, deterioration of ecological environments, and excessive and disorderly resource development, medicinal plant resources are becoming scarce, and some of them are insufficiently supplied. With the proposal of "the Belt and Road" Initiative, the cooperation between China and "the Belt and Road" partners(the countries and regions involved in "the Belt and Road" Initiative)is increasingly close, which provides a new opportunity for carrying out trade of medicinal plant resources and alleviating the problem of imbalance and relative inadequacy of medicinal plant resources in countries. This study first determined the distribution and species information of plant resources in countries and regions involved in "the Belt and Road" Initiative by investigating the database of plant distribution and that of medicinal plant resources. Then, according to the published data from the International Union for Conservation of Nature(IUCN) and the Convention on International Trade in Endangered Species of Wild Fauna and Flora(CITES), this study identified the rare and endangered medicinal plants and the medicinal plants under trade control in countries and regions involved in "the Belt and Road" Initiative and finally sorted out the list of potential medicinal plant resources in countries and regions involved in "the Belt and Road" Initiative that can be used by China. This data resource can not only be used for the overall protection of important endangered species but also scientifically guide the development and utilization of medicinal resources, providing guidance and a theoretical basis for the sustainable development of medicinal plant resources in countries and regions involved in "the Belt and Road" Initiative.


Assuntos
Plantas Medicinais , Humanos , Animais , Comércio , Internacionalidade , Meio Ambiente , China , Espécies em Perigo de Extinção
2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 370-378, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403313

RESUMO

Digitoxin, an important secondary metabolite of Digitalis purpurea, is a commonly used cardiotonic in clinical practice. 3ß-Hydroxysteroid dehydrogenase(3ßHSD) is a key enzyme involved in the biosynthesis of digitoxin. It belongs to the short-chain dehydrogenase/reductase(SDR) family, playing a role in the biosynthesis of cardiac glycosides by oxidizing and isomerizing the precursor sterol. In this study, two 3ßHSD genes were cloned from D. purpurea. The results showed that the open reading frame(ORF) of Dp3ßHSD1 was 780 bp, encoding 259 amino acid residues. The ORF of Dp3ßHSD2 was 774 bp and encoded 257 residues. Dp3ßHSD1/2 had the cofactor binding site TGxxxA/GxG and the catalytic site YxxxK. In vitro experiments confirmed that Dp3ßHSD1/2 catalyzed the generation of progesterone from pregnenolone, and Dp3ßHSD1 had stronger catalytic capacity than Dp3ßHSD2. The expression level of Dp3ßHSD1 was much higher than that of Dp3ßHSD2 in leaves, and digitoxin was only accumulated in leaves. The results implied that Dp3ßHSD1 played a role in the dehydrogenation of pregnenolone to produce progesterone in the biosynthesis of digitoxin. This study provides a reference for further exploring the biosynthetic pathway of cardiac glycosides in D. purpurea.


Assuntos
Digitoxina , Progesterona , Clonagem Molecular , Pregnenolona/metabolismo , Hidroxiesteroide Desidrogenases
3.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4545-4551, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802795

RESUMO

It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.


Assuntos
Reutilização de Equipamento , Medicina Tradicional Chinesa , Objetivos , Poluição Ambiental , Desenvolvimento Econômico , Carbono , China
4.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4620-4633, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802801

RESUMO

Tigliane type macrocyclic diterpenoids with special structures and diverse bioactivities are mainly extracted from plants of Euphorbiaceae and Thymelaeaceae. According to the different functional groups, they can be classified into types of phorbol esters, C-4 deoxyphorbol esters, C-12 deoxyphorbol esters, C-16 or C-17 substituted phorbol esters and others. Most of them present promising antiviral activities and cytotoxic activities and are expected to be developed as candidates for anti-AIDS, anti-tuberculosis, and anti-tumor clinical trials, demonstrating great potential for the application in healthcare. This paper reviews 115 novel tigliane-type diterpenoids discovered since 2013 and summarize their chemical structures and bioactivities, aiming to lay a foundation for further development and utilization of these compounds and provide new ideas for the development of clinical drugs.


Assuntos
Diterpenos , Forbóis , Estrutura Molecular , Diterpenos/farmacologia , Diterpenos/química , Antivirais , Ésteres de Forbol
5.
Food Sci Nutr ; 11(9): 5532-5542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701193

RESUMO

Rice steam processed product of Rehmanniae Radix (RSRR), one of the processed products of Rehmanniae Radix (RR), is popular as an herbal medicine and food. However, the health-promoting effects and mechanisms of RSRR are still unclear. In this study, 10-week-old Sprague-Dawley female rats were treated with different processed products of RR. No organ coefficient differences were observed between RSRR and the control group, indicating that RSRR did not cause damage to the rats. Compared with other RR products, superoxide dismutase, glutathione, and catalase levels were significantly higher and malondialdehyde levels were significantly lower in the RSRR group, indicating that RSRR exerted a better antioxidant effect. Gene expression analysis showed that hemoglobin genes (Hba-a1, Hba-a2, Hbb-bs, Hbb, Hbq1b, Hbb-b1, and LOC103694857) may be potential biomarkers to evaluate the antioxidant effect of RSRR. Antioxidation-related signaling pathways in GO annotation, including cellular oxidant detoxification, hydrogen peroxide metabolic process, hemoglobin complex, and oxygen binding signaling pathways were significantly enriched, indicating these pathways may represent the antioxidant mechanism of RSRR. To explore the main active compounds primarily responsible for the antioxidant activity of RSRR, UPLC-Q-TOF-MS was used and six components (catalpol, rehmannioside A, rehmannioside D, melittoside, ajugol, and verbascoside) were identified in rat serum. Catalpol and rehmannioside A were predicted to be the major active components by network pharmacology. These results suggested that RSRR exhibits antioxidant activity and has health-promoting properties. This study provides a scientific basis for the antioxidant mechanism and clinical use of RSRR.

6.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188952, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499988

RESUMO

Oncogenic signaling involved in tumor metabolic reprogramming. Tumorigenesis was not only determined by the mutations or deletion of oncogenes but also accompanied by the reprogramming of cellular metabolism. Metabolic alterations play a crucial regulatory role in the development and progression of tumors. Oncogenic PI3K/AKT signaling mediates the metabolic switch in cancer cells and immune cells in the tumor microenvironment. PI3K/AKT and its downstream effector branch off and connect to multiple steps of metabolism, such as glucose, lipids, and amino acids. Thus, PI3K inhibitor could effectively regulate metabolic pathway and impede the oncogenic process and some key metabolic proteins or critical enzymes also constitute biomarkers for tumor diagnosis and treatment. In the current review, we summarize the significant effect of PI3K/AKT signaling toward tumor metabolism, it enables us to obtain the better understanding for this interaction and develop more effective therapeutic strategies targeting cancer cell metabolism.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias/genética , Oncogenes , Microambiente Tumoral
7.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3421-3439, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37474980

RESUMO

Chinese medicinal resources are the material basis for the survival and development of traditional Chinese medicine(TCM)and the sustainable development of Chinese medicinal resources is also an important project for the modernization of TCM in China. With the increasing demand for Chinese medicinal resources in China, over-exploitation has destroyed Chinese medicinal resources, resulting in a shortage of many natural medicinal resources in China and making the sustainable development of TCM in trouble. The introduced new foreign medicinal resources have become effective supplement and replacement for Chinese medicinal resources to some extent. However, the development and utilization of new foreign medicinal resources in China are different. To fully understand the development of new foreign medicinal resources in China, this paper, taking 43 new foreign medicinal resources such as Acacia nilotica as objects, sorted out the introduction forms and policies of new foreign medicinal resources, overviewed its current development status in China, summarized the application experience of new foreign medicinal resources in the place of origin, as well as the research progress and problems of new foreign medicinal resources in China and abroad, and analyzed the research situation, which can enrich Chinese medicinal resources and other uses, promote the sustainable development of Chinese medicinal resources, and provide ideas for further development and research of new foreign medicinal resources.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Conservação dos Recursos Naturais , Desenvolvimento Sustentável , Internacionalidade , China
8.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3678-3683, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37474999

RESUMO

The study of classical prescriptions should probe into not only the history but also the formation methodology. As a representative of the logic thoughts in ancient China, the class concept has gone through long history, with the theoretical system completed by Biemo in the late Warring States period. The Mohist school, proposing the class concept, plays an important role in the history of Chinese logic and world logic, and its theory has also been inherited and developed by scholars of the same era and later generations. The study of the class concept will contribute to the integration of scientific methodologies between the east and the west. Exploring the impact of the class concept on traditional Chinese medicine(TCM), especially the application in classical prescriptions, may be a path worth exploring for further studying the thought of the Treatise on Febrile and Miscellaneous Diseases(Shang Han Za Bing Lun).


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , China , Prescrições
9.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3730-3735, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475064

RESUMO

Artemisia stolonifera is a relative of A. argyi. The two species are difficult to be distinguished due to the similarity in leaf shape and have even less distinctive features after processing. This study aims to establish a method to quickly distinguish between them. At the same time, we examined the reasonability and applicability of the specific polymerase chain reaction(PCR) method. The C/T single nucleotide polymorphism was detected at the position 202 of the sequence, based on which specific primers were designed to identify these two species. The PCR with the specific primer JNC-F and the universal primer ITS3R produced a specific band at 218 bp for A. argyi and no band for A. stolonifera, which can be used to detect at least 3% of A. argyi samples mixed in A. stolonifera samples. The PCR with the specific primer KY-F and the universal primer ITS3R produced a specific band at 218 bp for A. stolonifera and no band for A. argyi, which can be used to detect at least 5% of A. stolonifera samples mixed with A. argyi. The limit of detection of the established method was 5 ng DNA. The established PCR method can accurately distinguish between A. stolonifera and A. argyi, which provides an experimental basis for the quality control of A. stolonifera and determines whether the herbs are adulterated.


Assuntos
Artemisia , Artemisia/genética , Tricomas , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico , Folhas de Planta/genética
10.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2273-2283, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282856

RESUMO

The active ingredients in traditional Chinese medicine(TCM)are the foundation for the efficiency of TCM and the key to the formation of Dao-di herbs. It is of great significance to study the biosynthesis and regulation mechanisms of these active ingredients for analyzing the formation mechanism of Daodi herbs and providing components for the production of active ingredients in TCM by synthetic biology. With the advancements in omics technology, molecular biology, synthetic biology, artificial intelligence, etc., the analysis of biosynthetic pathways for active ingredients in TCM is rapidly progressing. New methods and technologies have promoted the analysis of the synthetic pathways of active ingredients in TCM and have also made this area a hot topic in molecular pharmacognosy. Many researchers have made significant progress in analyzing the biosynthetic pathways of active ingredients in TCM such as Panax ginseng, Salvia miltiorrhiza, Glycyrrhiza uralensis, and Tripterygium wilfordii. This paper systematically reviewed current research me-thods for analyzing the biosynthetic functional genes of active ingredients in TCM, elaborated the mining of gene elements based on multiomics technology and the verification of gene functions in plants in vitro and in vivo with candidate genes as objects. Additionally, the paper summarized new technologies and methods that have emerged in recent years, such as high-throughput screening, molecular probes, genome-wide association studies, cell-free systems, and computer simulation screening to provide a comprehensive reference for the analysis of the biosynthetic pathways of active ingredients in TCM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Inteligência Artificial , Vias Biossintéticas , Simulação por Computador , Estudo de Associação Genômica Ampla
11.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2307-2315, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282859

RESUMO

Cinnamomum camphora is an important economic tree species in China. According to the type and content of main components in the volatile oil of leaf, C. camphora were divided into five chemotypes, including borneol-type, camphor-type, linalool-type, cineole-type, and nerolidol-type. Terpene synthase(TPS) is the key enzyme for the formation of these compounds. Although several key enzyme genes have been identified, the biosynthetic pathway of(+)-borneol, which has the most economic value, has not been reported. In this study, nine terpenoid synthase genes CcTPS1-CcTPS9 were cloned through transcriptome analysis of four chemical-type leaves. After the recombinant protein was induced by Escherichia coli, geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) were used as substrates for enzymatic reaction, respectively. Both CcTPS1 and CcTPS9 could catalyze GPP to produce bornyl pyrophosphate, which could be hydrolyzed by phosphohydrolase to obtain(+)-borneol, and the product of(+)-borneol accounted for 0.4% and 89.3%, respectively. Both CcTPS3 and CcTPS6 could catalyze GPP to generate a single product linalool, and CcTPS6 could also react with FPP to generate nerolidol. CcTPS8 reacted with GPP to produce 1,8-cineol(30.71%). Nine terpene synthases produced 9 monoterpene and 6 sesquiterpenes. The study has identified the key enzyme genes responsible for borneol biosynthesis in C. camphora for the first time, laying a foundation for further elucidating the molecular mechanism of chemical type formation and cultivating new varieties of borneol with high yield by using bioengineering technology.


Assuntos
Alquil e Aril Transferases , Cinnamomum camphora , Cinnamomum camphora/enzimologia , Alquil e Aril Transferases/química
12.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2749-2756, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282935

RESUMO

The present study aimed to investigate the effect of various adjuvant rice on the quality of rice-steamed Rehmanniae Radix(RSRR) with Japonica rice, millet, yellow rice, black rice, and glutinous rice as raw materials, and analyze the anti-osteoporosis effect of RSRR by the optimal adjuvant rice. On the basis of the established UPLC-MS/MS method for the determination of the content of catalpol and rehmannioside D, comprehensive weighted scoring method was employed to evaluate the effect of various auxiliary rice on the quality of RSRR with the content of catalpol and rehmannioside D, character score, and taste score as indicators to optimize adjuvant rice. The osteoporosis model was induced by ovariectomy in rats. SD rats were randomly divided into a sham operation group, a model group, a positive control group, and low-dose and high-dose groups of Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, and Epimedii Folium-RSRR. After treatment for 12 weeks, body weight, bone calcium content, and bone mineral density were mea-sured. The results showed that Japonica rice was selected as the optimal adjuvant due to the highest comprehensive score of RSRR steamed by Japonica rice. Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, as well as Epimedii Folium-RSRR, could improve osteoporosis by increasing bone calcium content and bone mineral density. RSRR was superior to Rehmanniae Radix in improving osteo-porosis. However, there was no significant difference between RSRR and steamed Rehmanniae Radix. This study confirmed that Japo-nica rice was the optimal adjuvant rice of RSRR and verified the anti-osteoporosis effect of RSRR, which laid a foundation for further research on the pharmacological action and mechanism of RSRR.


Assuntos
Medicamentos de Ervas Chinesas , Oryza , Osteoporose , Rehmannia , Feminino , Ratos , Animais , Cromatografia Líquida , Cálcio , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Osteoporose/tratamento farmacológico , Adjuvantes Farmacêuticos
13.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3118-3123, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381970

RESUMO

Poria(Fu Ling) is a bulk traditional Chinese medicine(TCM)with a long history and complex varieties. The royal medical records of the Qing Dynasty include multiple medicinal materials of Fu Ling, such as Bai Fu Ling(white Poria), Chi Fu Ling(rubra Poria), and Zhu Fu Ling(Poria processed with cinnabaris). The Palace Museum preserves 6 kinds of specimens including Fu Ling Ge(dried Poria), Bai Fu Ling, Chi Fu Ling, Zhu Fu Ling, Bai Fu Shen(white Poria cum Radix Pini), and Fu Shen Mu(Poria cum Radix Pini). After trait identification and textual research, we found that Fu Ling Ge was an intact sclerotium, which was processed into Fu Ling Pi(Poriae Cutis), Bai Fu Ling and other medicinal materials in the Palace. The Fu Ling in the Qing Dynasty Pa-lace was mainly from the tribute paid of the officials in Yunnan-Guizhou region. The tribute situation was stable in the whole Qing Dynasty, and changed in the late Qing Dynasty. The cultural relics of Fu Ling in the Qing Dynasty Palace confirm with the archival documents such as the royal medical records and herbal medicine books, providing precious historical materials for understanding Fu Ling in the Qing Dynasty and a basis for the restoration of the processing of the Fu Ling in the Qing Dynasty Palace.


Assuntos
Besouros , Poria , Wolfiporia , Animais , China , Livros , Prontuários Médicos
14.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3125-3131, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381994

RESUMO

Dao-di medicinal materials produced in a specific environment always present excellent appearance and high quality. Because of the unique appearance, Ginseng Radix et Rhizoma is regarded as a paradigm in the research on excellent appearance. This paper systematically summarized the research progress in the genetic and environmental factors influencing the formation of the excellent appearance of Ginseng Radix et Rhizoma, aiming to provide reference for the quality improvement of Ginseng Radix et Rhizoma and the scientific connotation of Dao-di Chinese medicinal materials. The Ginseng Radix et Rhizoma with high quality generally has a robust and long rhizome, a large angle between branch roots, and the simultaneous presence of a robust basal part of rhizome, adventitious roots, rhizome bark with circular wrinkles, and fibrous roots with pearl points. The cultivated and wild Ginseng Radix et Rhizoma have significant differences in the appearance and no significant difference in the population genetic diversity. The differences in the appearance are associated with cell wall modification, transcriptional regulation of genes involved in plant hormone transduction, DNA methylation, and miRNA regulation. The rhizosphere soil microorganisms including Fusarium and Alternaria, as well as the endophytes Trichoderma hamatum and Nectria haematococca, may be the key microorganisms affecting the growth and development of Panax ginseng. Cultivation mode, variety, and root exudates may be the main factors influencing the stability of rhizosphere microbial community. Ginsenosides may be involved in the formation of the excellent appearance. However, most of the available studies focus on the partial or single factors in the formation of Dao-di medicinal materials, ignoring the relationship within the complex ecosystems, which limits the research on the formation mechanism of Dao-di medicinal materials. In the future, the experimental models for the research involving genetic and environmental factors should be established and mutant materials should be developed to clarify the internal relationship between factors and provide scientific support for the research on Dao-di medicinal materials.


Assuntos
Microbiota , Panax , Alternaria , Panax/genética , Rizoma
15.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3132-3139, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381995

RESUMO

Strigolactones(SLs) are a class of sesquiterpenoids derived from the carotenoid biosynthesis pathway with the core carbon skeleton consisting of tricyclic lactone(ABC tricyclic ring) and α,ß-unsaturated furan ring(D ring). SLs are widely distributed in higher plants and are symbiotic signals between plants and Arbuscular mycorrhiza(AM), which play key roles in the evolution of plant colonizing terrestrial habitats. As a new type of plant hormone, SLs possess such important biological functions as inhibiting shoot branching(tillers), regulating root architecture, promoting secondary growth, and improving plant stress resistance. Therefore, SLs have attracted wide attention. The biological functions of SLs are not only closely related to the formation of "excellent shape and quality" of Chinese medicinal materials but also have important practical significance for the production of high-quality medicinal materials. However, SLs have been currently widely studied in model plants and crops such as Oryza sativa and Arabidopsis thaliana, and few related studies have been reported on SLs in medicinal plants, which need to be strengthened. This review focused on the latest research progress in the isolation and identification, biological and artificial synthesis pathways, biosynthesis sites and transport modes, signal transduction pathways and mechanisms, and biological functions of SLs, and prospected the research on the regulation mechanism of SLs in the growth and development of medicinal plants and their related application on targeted regulation of Chinese herbal medicine production, which is expected to provide some references for the in-depth research on SLs in the field of Chinese medicinal resources.


Assuntos
Arabidopsis , Plantas Medicinais , Lactonas
16.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3140-3148, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381996

RESUMO

The gene GeDTC encoding the dicarboxylate-tricarboxylate carrier protein in Gastrodia elata was cloned by specific primers which were designed based on the transcriptome data of G. elata. Bioinformatics analysis on GeDTC gene was carried out by using ExPASY, ClustalW, MEGA, etc. Positive transgenic plants and potato minituber were obtained by virtue of the potato genetic transformation system. Agronomic characters, such as size, weight, organic acid content, and starch content, of potato minituber were tested and analyzed and GeDTC gene function was preliminarily investigated. The results showed that the open reading frame of GeDTC gene was 981 bp in length and 326 amino acid residues were encoded, with a relative molecular weight of 35.01 kDa. It was predicted that the theoretical isoelectric point of GeDTC protein was 9.83, the instability coefficient was 27.88, and the average index of hydrophilicity was 0.104, which was indicative of a stable hydrophilic protein. GeDTC protein had a transmembrane structure and no signal peptide and was located in the inner membrane of mitochondria. The phylogenetic tree showed that GeDTC was highly homologous with DTC proteins of other plant species, among which GeDTC had the highest homology with DcDTC(XP_020675804.1) in Dendrobium candidum, reaching 85.89%. GeDTC overexpression vector pCambia1300-35Spro-GeDTC was constructed by double digests, and transgenic potato plants were obtained by Agrobacterium-mediated gene transformation. Compared with the wild-type plants, transgenic potato minituber harvested by transplanting had smaller size, lighter weight, lower organic acid content, and no significant difference in starch content. It is preliminarily induced that GeDTC is the efflux channel of tricarboxylate and related to the tuber development, which lays a foundation for further elucidating the molecular mechanism of G. elata tuber development.


Assuntos
Gastrodia , Gastrodia/genética , Filogenia , Aminoácidos , Clonagem Molecular
17.
Yi Chuan ; 45(6): 501-513, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340964

RESUMO

With the advancement of plant synthetic biology, plastids have emerged as an optimal platform for the heterologous production of numerous commercially valuable secondary metabolites and therapeutic proteins. In comparison on nuclear genetic engineering, plastid genetic engineering offers unique advantages in terms of efficient expression of foreign genes and biological safety. However, the constitutive expression of foreign genes in the plastid system may impede plant growth. Therefore, it is imperative to further elucidate and design regulatory elements that can achieve precise regulation of foreign genes. In this review, we summarize the progress made in developing regulatory elements for plastid genetic engineering, including operon design and optimization, multi-gene coexpression regulation strategies, and identification of new expression regulatory elements. These findings provide valuable insights for future research.


Assuntos
Engenharia Genética , Plantas , Plantas/genética , Plastídeos/genética , Sequências Reguladoras de Ácido Nucleico , Transformação Genética , Plantas Geneticamente Modificadas/genética
18.
Phytochemistry ; 210: 113675, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031870

RESUMO

Aconicumines A-D, an advanced class of norditerpenoid alkaloids, and seven known alkaloids, were isolated from Aconitum taipaicum Hand.-Mazz. (Ranunculaceae). The structures of the previously undescribed compounds, including their absolute configurations, were fully elucidated based on spectroscopic and single-crystal X-ray diffraction data analysis. Aconicumines A-D exhibit interesting cage-like structure, characterised by an unprecedented N,O-diacetal moiety (C6-O-C19-N-C17-O-C7) that has not been previously observed in diterpenoid alkaloids. Possible biosynthetic pathways for aconicumines A-D were proposed. Aconitine, hypaconitine, and aconicumine A showed significant inhibition of nitric oxide production in RAW 264.7 macrophages induced by lipopolysaccharide with IC50 values ranging from 4.1 to 19.7 µM compared to positive control (dexamethasone, IC50 = 12.5 µM). Furthermore, the primary structure-activity relationships for aconicumines A-D were also represented.


Assuntos
Aconitum , Alcaloides , Diterpenos , Aconitum/química , Alcaloides/química , Diterpenos/química , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Raízes de Plantas/química , Estrutura Molecular
19.
Zhongguo Zhong Yao Za Zhi ; 48(3): 608-613, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872223

RESUMO

This paper introduced the overview of the "eight trends" of Chinese medicinal materials(CMM) industry in 2021, analyzed the problems of CMM production, and put forward development suggestions. Specifically, "eight trends" could be summarized as follows.(1) The growing area of CMM tended to be stable, and some provinces began to release the local catalog of Dao-di herbs.(2) The protection process of new varieties accelerated, and a number of excellent varieties were bred.(3) The theory of ecological cultivation was further enriched, and the demonstration effect of ecological cultivation technology was prominent.(4) Some CMM realized complete mechanization and formed typical model cases.(5) The number of cultivation bases using the traceability platform increased, and provincial internet trading platforms were set up.(6) The construction of CMM industrial clusters accelerated, and the number of provincial-level regional brands increased rapidly.(7) Many new agricultural business entities were founded nationwide, and a variety of methods were used to drive the intensified development of CMM.(8) A number of local TCM laws were promulgated, and the management regulation of food and medicine homology substances catalogs was issued. On this basis, four suggestions for CMM production were proposed.(1) It is suggested to speed up the formulation of the national catalog of Dao-di herbs and carry out the certification of Dao-di herbs production bases.(2) Ecological planting of forest and grassland medicine should be further strengthened in terms of technical research and promotion based on the principle of ecological priority.(3) The basic work of disaster prevention should be paid more attention and technical measures for disaster mitigation should be developed.(4) The planted area of commonly used CMM should be incorporated into the national regular statistical system.


Assuntos
Comércio , Indústrias , Agricultura , Certificação , China
20.
Phytomedicine ; 113: 154737, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905867

RESUMO

BACKGROUND: Antibiotic-associated diarrhea (AAD) has had a significant increase in the last years, with limited available effective therapies. Shengjiang Xiexin Decoction (SXD), a classic traditional Chinese medicine formula for treating diarrhea, is a promising alternative for reducing the incidence of AAD. PURPOSE: This study aimed to explore the therapeutic effect of SXD on AAD and to investigate its potential therapeutic mechanism by integrated analysis of the gut microbiome and intestinal metabolic profile. METHODS: 16S rRNA sequencing analysis of the gut microbiota and untargeted-metabolomics analysis of feces were performed. The mechanism was further explored by fecal microbiota transplantation (FMT). RESULTS: SXD could effectively ameliorate AAD symptoms and restore intestinal barrier function. In addition, SXD could significantly improve the diversity of the gut microbiota and accelerate the recovery of the gut microbiota. At the genus level, SXD significantly increased the relative abundance of Bacteroides spp (p < 0.01) and decreased the relative abundance of Escherichia_Shigela spp (p < 0.001). Untargeted metabolomics showed that SXD significantly improved gut microbiota and host metabolic function, particularly bile acid metabolism and amino acid metabolism. CONCLUSION: This study demonstrated that SXD could extensively modulate the gut microbiota and intestinal metabolic homeostasis to treat AAD.


Assuntos
Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Homeostase , Antibacterianos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...