Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172231, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608902

RESUMO

Endophytic microorganisms are indispensable symbionts during plant growth and development and often serve functions such as growth promotion and stress resistance in plants. Therefore, an increasing number of researchers have applied endophytes for multifaceted phytoremediation (e.g., organic pollutants and heavy metals) in recent years. With the availability of next-generation sequencing technologies, an increasing number of studies have shifted the focus from culturable bacteria to total communities. However, information on the composition, structure, and function of bacterial endophytic communities is still not widely synthesized. To explore the general patterns of variation in bacterial communities between plant niches, we reanalyzed data from 1499 samples in 30 individual studies from different continents and provided comprehensive insights. A group of bacterial genera were commonly found in most plant roots and shoots. Our analysis revealed distinct variations in the diversity, composition, structure, and function of endophytic bacterial communities between plant roots and shoots. These variations underscore the sophisticated mechanisms by which plants engage with their endophytic microbiota, optimizing these interactions to bolster growth, health, and resilience against stress. Highlighting the strategic role of endophytic bacteria in promoting sustainable agricultural practices and environmental stewardship, our study not only offers global insights into the endophytic bacterial communities of terrestrial plants but also underscores the untapped potential of these communities as invaluable resources for future research.


Assuntos
Agricultura , Bactérias , Endófitos , Microbiota , Plantas , Endófitos/fisiologia , Agricultura/métodos , Plantas/microbiologia , Biodegradação Ambiental , Raízes de Plantas/microbiologia
2.
Environ Sci Pollut Res Int ; 31(3): 3696-3706, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091222

RESUMO

Intercropping crops with hyperaccumulators is a proven model for coupling crop safety production and soil heavy metal remediation. And both crop genotypes and soil properties might have great impacts on the effect of intercropping. Therefore, a greenhouse pot experiment was designed to investigate the effects of intercropping different tomato varieties with the cadmium (Cd) hyperaccumulator Sedum alfredii Hance (S. alfredii Hance) on different soils. The results showed that intercropping promoted Cd uptake by S. alfredii Hance and reduced soil total Cd concentration. There was no significant effect of intercropping on tomato yield and Cd concentration. Different tomato varieties had different effects on tomato yield and Cd concentration. The yield of cherry tomato was 1.04 times higher than that of common large fruit tomato, while the Cd concentration in all parts was lower than that of common large fruit tomato. Different typical zonal soils had different effects on tomato production and soil remediation. And among the four studied soils, tomatoes grown on ZJ soil had the highest yields and lowest fruit Cd concentration, making them more suitable for remediation coupled with safety production. This study provided a comprehensive analysis of tomato production benefits and soil remediation effects, which could be useful as a guide in vegetable safety production coupled with soil remediation practices in the Cd-contaminated greenhouse.


Assuntos
Sedum , Poluentes do Solo , Solanum lycopersicum , Cádmio/análise , Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Produção Agrícola
3.
Environ Sci Pollut Res Int ; 30(55): 117277-117287, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864699

RESUMO

The main purpose of applying organic or inorganic amendments is to guarantee crop safe production in heavy metal contaminated soil. However, previous studies showed that the effects of organic or inorganic composite amendments on the cadmium (Cd) concentration of lettuce (Lactuca sativa var. ramosa Hort) were inconsistent. Accordingly, a sixty-day pot experiment was carried out to examine the impacts of the inorganic materials (lime, L and zeolite, Z), organic materials (biochar, B and compost, C), and their combination on the immobilization of Cd in soil and its uptake by lettuce. The objective was to identify the most suitable soil amendment combination that promotes safe lettuce production. The results revealed that the combined application of BC, LZC, and LBC significantly increased the plant height by 11.09-28.04% and fresh weight by 183.47-207.67%. This improvement can be attributed to enhanced soil quality, such as increased dissolved organic carbon (DOC) by 70.19-80.42%, soil respiration (SR) by 29.04-38.46%, and soil microbial carbon content (SMC) by 36.94-46.63%. Compared to inorganic fertilizers and their combination with organic amendments, organic amendments had a significant impact on reducing shoot Cd concentration by 33.93%-56.55%, while increasing the activity of catalase by 138.87-186.86%. And soil available Cd measured by diffusive gradients in thin-films (DGT-Cd) decreased 24.73-88.13% in all treatments. Correlation analysis showed that plant Cd concentration was significantly correlated with soil pH, SR, cation exchange capacity (CEC), DOC and SMC. These results demonstrated that organic amendments, especially the combination of biochar and compost, have greater potential than inorganic amendments and inorganic-organic combinations for realizing safe production of lettuce and improving soil quality in the Cd moderately contaminated acid farmland.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/análise , Lactuca , Metais Pesados/análise , Carvão Vegetal/química , Solo/química , Poluentes do Solo/análise
4.
Toxics ; 11(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37112598

RESUMO

Chromium (Cr) is a major pollutant affecting the environment and human health and microbial remediation is considered to be the most promising technology for the restoration of the heavily metal-polluted soil. However, the difference between rhizosphere and endophytic bacteria on the potential of crop safety production in Cr-contaminated farmland is not clearly elucidated. Therefore, eight Cr-tolerant endophytic strains of three species: Serratia (SR-1~2), Lysinebacillus (LB-1~5) and Pseudomonas (PA-1) were isolated from rice and maize. Additionally, one Cr-tolerant strain of Alcaligenes faecalis (AF-1) was isolated from the rhizosphere of maize. A randomized group pot experiment with heavily Cr-contaminated (a total Cr concentration of 1020.18 mg kg-1) paddy clay soil was conducted and the effects of different bacteria on plant growth, absorption and accumulation of Cr in lettuce (Lactuca sativa var. Hort) were compared. The results show that: (i) the addition of SR-2, PA-1 and LB-5 could promote the accumulation of plant fresh weight by 10.3%, 13.5% and 14.2%, respectively; (ii) most of the bacteria could significantly increase the activities of rhizosphere soil catalase and sucrase, among which LB-1 promotes catalase activity by 224.60% and PA-1 increases sucrase activity by 247%; (iii) AF-1, SR-1, LB-1, SR-2, LB-2, LB-3, LB-4 and LB-5 strains could significantly decrease shoot the Cr concentration by 19.2-83.6%. The results reveal that Cr-tolerant bacteria have good potential to reduce shoot Cr concentration at the heavily contaminated soil and endophytic bacteria have the same or even better effects than rhizosphere bacteria; this suggests that bacteria in plants are more ecological friendly than bacteria in soil, thus aiming to safely produce crops in Cr-polluted farmland and alleviate Cr contamination from the food chain.

5.
Sci Total Environ ; 875: 162700, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906036

RESUMO

Intercropping with hyperaccumulators is believed to be an important and efficient way to achieve simultaneous safe agricultural production and phytoremediation of polluted soils. However, some studies have suggested that this technique might facilitate the uptake of heavy metals by crops. To investigate the effects of intercropping on the heavy metal contents of plants and soil, data from 135 global studies were collected and analyzed by meta-analysis. The results showed that intercropping could significantly reduce the contents of heavy metals in the main plants and soils. Plant species was the main factor that affected plant and soil metal contents in the intercropping system, and the heavy metal content could be significantly reduced when members of the Poaceae and Crassulaceae were used as main plants or when legumes were used as intercropped plants. Among all the intercropped plants, the best one for removing heavy metals from the soil was a Crassulaceae hyperaccumulator. These results not only highlight the main factors affecting intercropping systems but also provide reliable reference information for the practice of safe agricultural production coupled with phytoremediation of heavy metal-contaminated farmland.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Solo , Produtos Agrícolas , Cádmio/análise
6.
J Environ Sci (China) ; 128: 117-128, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801027

RESUMO

Cadmium (Cd) bioavailability in the rhizosphere makes an important difference in grain Cd accumulation in wheat. Here, pot experiments combined with 16S rRNA gene sequencing were conducted to compare the Cd bioavailability and bacterial community in the rhizosphere of two wheat (Triticum aestivum L.) genotypes, a low-Cd-accumulating genotype in grains (LT) and a high-Cd-accumulating genotype in grains (HT), grown on four different soils with Cd contamination. Results showed that there was non-significant difference in total Cd concentration among four soils. However, except for black soil, DTPA-Cd concentrations in HT rhizospheres were higher than those of LT in fluvisol, paddy soil and purple soil. Results of 16S rRNA gene sequencing showed that soil type (52.7%) was the strongest determinant of root-associated community, while there were still some differences in rhizosphere bacterial community composition between two wheat genotypes. Taxa specifically colonized in HT rhizosphere (Acidobacteria, Gemmatimonadetes, Bacteroidetes and Deltaproteobacteria) could participate in metal activation, whereas LT rhizosphere was highly enriched by plant growth-promoting taxa. In addition, PICRUSt2 analysis also predicted high relative abundances of imputed functional profiles related to membrane transport and amino acid metabolism in HT rhizosphere. These results revealed that the rhizosphere bacterial community may be an important factor regulating Cd uptake and accumulation in wheat and indicated that the high Cd-accumulating cultivar might improve Cd bioavailability in the rhizosphere by recruiting taxa related to Cd activation, thus promoting Cd uptake and accumulation.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/metabolismo , Triticum , Rizosfera , Solo/química , RNA Ribossômico 16S/genética , Poluentes do Solo/análise , Bactérias/metabolismo , Genótipo
7.
Environ Sci Pollut Res Int ; 30(17): 51075-51088, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807262

RESUMO

Application of crop residues and chemical nitrogen (N) fertilizer is a conventional practice for achieving high yield in a rice system. However, the fallacious combination of N fertilizers with crop straw not only significantly reduces the N use efficiencies (NUEs) but also leads to serious environmental problems. The present study employed five treatments including no N fertilization and no straw incorporation (ck), N fertilization incorporation only (S0), N fertilization with 40% straw (S40), N fertilization with 60% straw (S60), and N fertilization with 100% straw (S100) to improve N use efficiency as well as reduced Cd distribution in rice. The crop yields were largely enhanced by fertilization ranging from 13 to 52% over the straw addition treatments. Compared with ck, N fertilizer input significantly decreased soil pH, while DOC contents were raised in response to straw amendment, reaching the highest in S60 and S100 treatments, respectively. Moreover, straw addition substantially impacted the Cd accumulation and altered the bacterial community structure. The soil NH4+-N concentration under S0 performed the maximum in yellow soil, while the minimum in black soil compared to straw-incorporated pots. In addition, the soil NO3--N concentration in straw-incorporated plots tended to be higher than that in straw-removed plots in both soils, indicating that crop straw triggering the N mineralization was associated with native soil N condition. Furthermore, the NUE increased with 15 N uptake in the plant, and the residual 15 N in soil was increased by 26.8% with straw addition across four straw application rates. Overall, our study highlights the trade-offs between straw incorporation with N fertilizer in eliminating potential Cd toxicity, increasing fertilizer-N use efficiencies and help to provide a feasible agricultural management.


Assuntos
Fertilizantes , Oryza , Fertilizantes/análise , Oryza/química , Cádmio/análise , Agricultura , Solo/química , Nitrogênio/análise , China
8.
Toxics ; 10(7)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35878301

RESUMO

Single or combined plant growth-promoting bacteria (PGPB) strains were widely applied as microbial agents in cadmium (Cd) phytoextraction since they could promote plant growth and facilitate Cd uptake. However, the distinct functional effects between single and combined inoculants have not yet been elucidated. In this study, a field experiment was conducted with single, double and triple inoculants to clarify their divergent impacts on plant growth, Cd uptake and accumulation at different growth stages of Brassica juncea L. by three different PGPB strains (Cupriavidus SaCR1, Burkholdria SaMR10 and Sphingomonas SaMR12). The results show that SaCR1 + SaMR10 + SaMR12 combined inoculants were more effective for growth promotion at the bud stage, flowering stage, and mature stage. Single/combined PGPB agents of SaMR12 and SaMR10 were more efficient for Cd uptake promotion. In addition, SaMR10 + SaMR12 combined the inoculants greatly facilitated Cd uptake and accumulation in shoots, and enhanced the straw Cd extraction rates by 156%. Therefore, it is concluded that the application of PGPB inoculants elevated Cd phytoextraction efficiency, and the combined inoculants were more conductive than single inoculants. These results enriched the existing understanding of PGPB agents and provided technical support for the further exploration of PGPB interacting mechanisms strains on plant growth and Cd phytoextraction, which helped establish an efficient plant-microbe combined phytoremediation system and augment the phytoextraction efficiency in Cd-contaminated farmlands.

9.
Environ Sci Pollut Res Int ; 29(47): 71810-71825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35604595

RESUMO

Organic and inorganic mixtures can be developed as immobilizing agents that could reduce heavy metal accumulation in crops and contribute to food safety. Here, inorganic materials (lime, L; zeolite, Z; and sepiolite, S) and organic materials (biochar, B, and compost, C) were selectively mixed to produce six composite soil amendments (LZBC, LSBC, LZC, LZB, LSC, and LSB). Given the fact that LZBC showed the best performance in decreasing soil Cd availability in the incubation experiment, it was further applied in the field condition with 14 vegetables as the test crops to investigate its effects on crop safety production in polluted greenhouse. The results showed that LZBC addition elevated rhizosphere soil pH by 0.1-2.0 units and reduced soil Cd availability by 1.85-37.99%. Both the biomass and the yields of edible parts of all vegetables were improved by LZBC addition. However, LZBC addition differently affected Cd accumulation in edible parts of the experimental vegetables, with the observation that Cd contents were significantly reduced in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., but increased in the three species of Lactuca sativa. Further health risk assessment showed that LZBC application significantly decreased daily intake of metal (DIM), health risk index (HRI), and target hazard quotient (THQ) for Cd in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., whereas increased all the indexes in Lactuca sativa. Our results showed that the effect of a composite amendment on Cd accumulation in different vegetables could be divergent and species-dependent, which suggested that it is essential to conduct a pre-experiment to verify applicable species for a specific soil amendment designed for heavy metal immobilization.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Zeolitas , Cádmio/análise , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Verduras
10.
Ecotoxicol Environ Saf ; 237: 113541, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483144

RESUMO

Combined bioaugmentation inoculants composed of two or more plant growth-promoting bacteria (PGPB) were more effective than single inoculants for plant growth and cadmium (Cd) removal in contaminated soils. However, the principles of consortia construction still need to be discovered. Here, a pot experiment with Cd natural polluted soil was conducted and PGPB consortia with different ecological niches from hyperaccumulator Sedum alfredii Hance were used to compare their effects and mechanisms on plant growth condition, Cd phytoextraction efficiency, soil enzymatic activities, and rhizospheric bacterial community of Brassica juncea L. The results showed that both rhizospheric and endophytic PGPB consortia inoculants promoted plant growth (6.9%-22.1%), facilitated Cd uptake (230.0%-350.0%) of oilseed rape, increased Cd phytoextraction efficiency (343.0%-441.0%), and enhanced soil Cd removal rates (92.0%-144.0%). PGPB consortia inoculants also enhanced soil microbial carbon by 22.2%-50.5%, activated the activities of soil urease and sucrase by 74.7%-158.4% and 8.4%-61.3%, respectively. Simultaneously, PGPB consortia inoculants increased the relative abundance of Flavobacterium, Rhodanobacter, Kosakonia, Pseudomonas and Paraburkholderia at the genus level, which may be beneficial to plant growth promotion and bacterial phytopathogen biocontrol. Although the four PGPB consortia inoculants promoted oilseed growth, amplified Cd phytoextraction, and changed bacterial community structure in rhizosphere soil, their original ecological niches were not a decisive factor for the efficiency of PGPB consortia. therefore, the results enriched the present knowledge regarding the significant roles of PGPB consortia as bioaugmentation agents and preliminarily explored construction principles of effective bioaugmentation inoculants, which will provide insights into the microbial responses to combined inoculation in the Cd-contaminated soils.


Assuntos
Inoculantes Agrícolas , Sedum , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Cádmio/análise , Mostardeira , Rizosfera , Sedum/microbiologia , Solo , Poluentes do Solo/análise
11.
Sci Rep ; 12(1): 2815, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181683

RESUMO

Soil microorganisms could affect the quality of tobacco leaves, however, little is known about the association of tobacco chemical components and soil fungal communities. In the present study, the relationship between soil fungi and tobacco quality based on chemical components in Bijie was investigated. The results showed that the total harmony scores (THS) of the analyzed tobacco leaves ranged from 46.55 ± 3.5 to 91.55 ± 2.25. Analyses of chemical components revealed that high contents of nicotine (≥ 1.06%) and sugar (total sugar: ≥ 22.96%, reducing sugar: ≥ 19.62%), as well as low potassium level (≤ 2.68%) were the main factors limiting the quality of flue-cured tobacco leaves. Pearson correlation analysis indicated that soil nitrate, available potassium/phosphorous, and organic matter significantly correlated with tobacco nicotine, potassium, and chloride levels (p < 0.05). Besides, the analysis of alpha- and beta-diversity of soil fungal communities implied that fungal structure rather than the richness affected the chemical quality of tobacco. In detail, the relative abundance of Humicola olivacea species in soils was positively correlated with the THS of tobaccos (r = 0.52, p < 0.05). Moreover, the species including Mortierella alpina, Mortierella hyalina, Tausonia pullulan, and Humicola olivacea were negatively correlated with tobacco sugar (r ≤ - 0.45, p < 0.05) while, Codinaea acaciae and Saitozyma podzolica species were negatively correlated with tobacco nicotine (r ≤ - 0.51, p < 0.05). The present study provides a preliminary basis for utilizing fungal species in soils to improve the chemical quality of tobacco in the studied area.


Assuntos
Micobioma/genética , Nicotiana/química , Folhas de Planta/química , Microbiologia do Solo , Gênero de Fungos Humicola/química , Fungos/química , Fungos/genética , Mortierella/química , Folhas de Planta/microbiologia , Potássio/metabolismo , Nicotiana/microbiologia , Produtos do Tabaco/análise
12.
J Environ Sci (China) ; 115: 383-391, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969466

RESUMO

The combination of intercropping and phytoremediation in the remediation of cadmium contaminated soil is an emerging model in recent years, but the results of previous studies are inconsistent. In the field experiment, eggplant was intercropped with hyperaccumulator Sedum alfredii Hance (inoculated or not inoculated with endophytic bacteria) to study the effects of intercropping on vegetable safety production, phytoremediation efficiency of hyperaccumulator and variation of soil available nutrients. The results showed that the intercropping treatment had a negative effect on the growth of eggplant and Sedum, but endophyte SaMR12 alleviated the inhibition of intercropping on plant growth. Intercropping treatment increases the Cd concentration in edible part of eggplant to 1.34 mg/kg compared with eggplant monoculture (1.19 mg/kg). While the application of SaMR12 reduces the Cd concentration of eggplant fruit to 0.95 mg/kg and significantly promotes the Cd uptake by Sedum. What's more surprising is that compared with eggplant monocropping, the content of soil available nitrogen, phosphorus and potassium in the treatment of intercropping with inoculated Sedum increased significantly. And according to the correlation analysis of various indexes of plants and soil, the Cd content of eggplant is negatively correlated with the available phosphorus and potassium in the soil, while the Cd content of Sedum is positively correlated with it, which suggested that the application of phosphorus and potassium fertilizers in this experimental site was beneficial to reduce Cd content in eggplant and improve Cd phytoextraction of Sedum. Therefore, in the daily production of moderately Cd-contaminated soil, intercropping eggplant with Sedum inoculated with endophytic bacteria is an excellent Phytoextraction Coupled with Agro-safe-production (PCA) pattern.


Assuntos
Sedum , Poluentes do Solo , Solanum melongena , Bactérias , Biodegradação Ambiental , Cádmio/análise , Solo , Poluentes do Solo/análise , Verduras
13.
Environ Sci Pollut Res Int ; 29(5): 7721-7731, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480304

RESUMO

Due to the increasing concerns of heavy metal contamination in greenhouse soil, the safe production of vegetables, especially leafy vegetables, is largely limited. In this study, the cadmium (Cd) concentration and major nutritional qualities of 23 main celery cultivars from China were compared in a greenhouse experiment. Large genotypic differences in biomass, cadmium accumulation and nutrition traits were observed. The biomass of cultivars Hongqin (HQ), Jialifuniyadiwangxiqin (JZ), Jinhuangqincai (JH) and Shanqincai (SQ) was significantly higher than that of the others. The Cd concentration in the edible part ranged from 0.53 to 2.56 mg·kg-1 DW, of which SQ exhibited the lowest Cd concentration. In addition, SQ had the lowest Cd transport factor (TF) and bioconcentration factor (BCF), followed by Liangfengyuqin (LF). Simultaneously, both genotypes had a relatively higher chlorophyll content and vitamin C concentration and lower cellulose content. Therefore, the two genotypes SQ and LF were selected as promising candidates for growth in a moderately Cd-contaminated greenhouse to achieve safe production. Further correlation analysis and redundancy analysis showed that the Cd concentration in the edible part was positively correlated with the cellulose content but negatively correlated with the vitamin C concentration. The results of celery variety screening provide a safe production strategy for moderately polluted greenhouse vegetable soils.


Assuntos
Apium , Poluentes do Solo , Cádmio/análise , China , Genótipo , Solo , Poluentes do Solo/análise , Verduras
14.
Toxics ; 11(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36668753

RESUMO

With the rapid development of industry, chromium (Cr) pollutants accumulate constantly in the soil, causing severe soil Cr pollution problems. Farmland Cr pollution hurts the safety of agricultural production and indirectly affects human health and safety. However, the current situation of Cr pollution in farmland soil and crops has not been detailed enough. In this study, the evaluation of Cr potential risk in soil-crop systems was conducted in a rural area that was affected by industry and historic sewage irrigation. Ten different crops and rhizosphere soils were sampled from four fields. The results showed that Cr contents in farmland soil exceeded the national standard threshold in China (>21.85%), and the Cr content in edible parts of some agricultural products exceeded that too. According to the PCA and relation analysis, the Cr accumulation in edible parts showed a significant correlation with soil Cr contents and available potassium contents. Except for water spinach, the target hazard quotient (THQ) of the other crops was lower than 1.0 but the carcinogenic health risks all exceeded the limits. The carcinogenic risks (CR) of different types of crops are food crops > legume crops > leafy vegetable crops and root-tuber crops. A comprehensive assessment revealed that planting water spinach in this area had the highest potential risk of Cr pollution. This study provided a scientific and reliable approach by integrating soil environmental quality and agricultural product security, which helps evaluate the potential risk of Cr in arable land more efficiently and lays technical guidelines for local agricultural production safety.

15.
Chemosphere ; 285: 131499, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34265715

RESUMO

Cadmium (Cd) exposure is related to a multitude of adverse health outcomes because food crops grown on Cd-polluted soil are widely consumed by the public. The present study investigates the different application techniques of a combined amendment (lime + zeolite + biochar + compost, LZBC) for soil Cd immobilization effect on growth performance, Cd uptake by the second season crops, and soil quality in greenhouse vegetable production (GVP) under a rotation system. Five fruit vegetables were cultivated as the second season crop in the same plots which have been used for pakchoi as the first season crop (with or without LZBC application). The results indicated that LZBC with the consecutive application (T3) promoted crops biomass and fruit yield the most, followed by LZBC with the second crop application (T2) and LZBC with the first crop application (T1). LZBC application showed increasing rhizosphere soil pH and improvement in soil fertility of all crops including available nitrogen, available phosphorus, available potassium, organic matter, and cation exchange capacity. LZBC had positive influences on soluble sugar, soluble protein, and vitamin C in edible parts of 5 vegetables. Cd contents in fruit, shoot, and root of eggplant, pimento, cowpea, and tomato except cucumber were reduced by adding LZBC. As for the economic performance, T3 had the highest output/input ratio in general. Overall, these results demonstrated that T3 was dramatically more effective for minimizing health risk, increasing production, and facilitating sustainable utilization of soil under the Cd-contaminated GVP system.


Assuntos
Cádmio , Poluentes do Solo , Adsorção , Cádmio/análise , Frutas/química , Solo , Poluentes do Solo/análise , Verduras
16.
Environ Pollut ; 268(Pt B): 115869, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128930

RESUMO

Phytoremediation coupled with co-cropping is assumed to be good for safety utilization and remediation of heavy metal contaminated farmland, which can ensure farmers' income without increasing health risks for human. In this study, the effects on plant cadmium (Cd) accumulation and health risk of consuming the vegetable plant were compared between monoculture and co-cropping of cauliflower (Brassica oleracea) with two ecotypes of Sedum alfredii in a moderately (0.82 mg kg-1) Cd contaminated greenhouse vegetable field. The results showed that co-cropping with S. alfredii raised Cd concentration in edible part of cauliflower with slightly growth promotion. The health risk of consuming cauliflower to different groups of people have been evaluated by calculating Hazard Quotient (HQ) and all HQ value were less than 1.0, which indicated that eating co-cropped cauliflower would not cause health risks to adults and children. Besides, the Cd concentration of hyperaccumulating ecotype (HE) of S. alfredii was 27.3 mg kg-1 in monoculture and it increased to 51.2 mg kg-1 after co-cropping with cauliflower, suggesting that the co-cropping system promoted HE Cd absorption capacity. Therefore, the "Phytoextraction Coupled with Agro-safe-production" (PCA) model of cauliflower and HE can serve as an alternative sustainable strategy in the Cd moderate polluted greenhouse.


Assuntos
Brassica , Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Criança , Humanos , Raízes de Plantas/química , Medição de Risco , Poluentes do Solo/análise , Verduras
17.
Environ Pollut ; 264: 114677, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32388299

RESUMO

Cadmium (Cd) pollution in soil is a serious problem affecting environmental safety and human health, and the majority of Cd in human body comes from edible vegetables, especially leafy vegetables. Therefore, it is necessary to understand the absorption and transport of Cd soil by leafy vegetables. In this study, the meta-analysis method was firstly employed to study the relationship of Cd in leafy vegetables and soil systems. The results showed that different kinds of leafy vegetables have different abilities of Cd accumulation (measured by bioconcentration factor (BCF)) and transportation (measured by translocation factor (TF)): Brassica juncea (BCF = 5.10) and Brassica pekinensis (BCF = 1.90) had significantly higher ability to absorb cadmium in soil among the 19 studied species, Brassica pekinensis (TF = 2.52), Coriandrum sativum (TF = 2.18) had significantly higher cadmium transport capacity than other 11 species. To further clarify the influence of the three main factors of soil pH, Cd content and leafy vegetable species on the Cd enrichment ability of leafy vegetables, the regression equation was obtained by meta-regression analysis. BCF is affected by species, soil pH, soil cadmium content in the order from high to low. It was found that the estimated range of SOM for safe production of leafy vegetables is 20-30 g/kg. It could also be observed that soil cation exchange capacity (CEC) had a negative correlation with BCF, while soil salinity had a strong positive correlation with BCF. This study can provide a reliable reference for leafy vegetable security production in the Cd polluted field and aids in selecting species suitable for avoiding the absorption of heavy metals from polluted soil.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Cádmio/análise , China , Humanos , Solo , Verduras
18.
J Hazard Mater ; 395: 122661, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32305720

RESUMO

Plant growth-promoting bacteria (PGPB) that inhabit hyperaccumulating plants assist cadmium (Cd) absorption, but the underlying mechanism has not been comprehensively studied. For this reason, we combined the fluorescence imaging, and transcriptomic and metabolomic methods in a Cd hyperaccumulator, Sedum alfredii, inoculated or not with PGPB Pseudomonas fluorescens. The results showed that the newly emerged lateral roots, that were heavily colonized by P. fluorescens, are the main entry for Cd influx in S. alfredii. Inoculation with P. fluorescens promoted a lateral root formation of its host plant, leading to a higher Cd phytoremediation efficiency. Furthermore, the plant transcriptome revealed that 146 plant hormone related genes were significantly up-regulated by the bacterial inoculation, with 119 of them showing a complex interaction, which suggests that a hormonal crosstalk participated root development. The targeted metabolomics analysis showed that P. fluorescens inoculation significantly increased indole acetic acid concentration and significantly decreased concentrations of abscisic acid, brassinolide, trans-zeatin, ethylene and jasmonic acid in S. alfredii roots, thereby inducing lateral root emergence. Altogether, our results highlight the importance of PGPB-induced lateral root formation for the increased Cd uptake in a hyperaccumulating plant.


Assuntos
Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , Raízes de Plantas/química , Poluentes do Solo/análise
19.
BMC Plant Biol ; 20(1): 63, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32028891

RESUMO

BACKGROUND: Microbes isolated from hyperaccumulating plants have been reported to be effective in achieving higher phytoextraction efficiency. The plant growth-promoting bacteria (PGPB) SaMR12 from the cadmium (Cd)/zinc hyperaccumulator Sedum alfredii Hance could promote the growth of a non-host plant, oilseed rape, under Cd stress. However, the effect of SaMR12 on Brasscia juncea antioxidative response under Cd exposure was still unclear. RESULTS: A hydroponic experiment was conducted to study the effects of Sphingomonas SaMR12 on its non-host plant Brassica juncea (L.) Czern. under four different Cd treatments. The results showed that SaMR12 could colonize and aggregate in the roots and then move to the shoots. SaMR12 inoculation promoted plant growth by up to 71% in aboveground biomass and 81% in root biomass over that of the non-inoculated plants. SaMR12-inoculated plants significantly enhanced root Cd accumulation in the 10 and 20 µM Cd treatments, with 1.72- and 0.86-fold increases, respectively, over that of the non-inoculated plants. SaMR12 inoculation not only decreased shoot hydrogen peroxide (H2O2) content by up to 38% and malondialdehyde (MDA) content by up to 60% but also reduced proline content by 7-30% in shoots and 17-32% in roots compared to the levels in non-inoculated plants. Additionally, SaMR12 inoculation promoted the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and facilitated the relative gene expression levels of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in the glutathione (GSH)-ascorbic acid (AsA) cycle. CONCLUSIONS: The results demonstrated that, under Cd stress, SaMR12 inoculation could activate the antioxidative response of B. juncea by decreasing the concentrations of H2O2, MDA and proline, increasing the activities of antioxidative enzymes, and regulating the GSH-AsA cycle. These results provide a theoretical foundation for the potential application of hyperaccumulator endophytic bacteria as remediating agents to improve heavy metal tolerance within non-host plant species, which could further improve phytoextraction efficiency.


Assuntos
Cádmio/efeitos adversos , Endófitos/fisiologia , Mostardeira/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Sphingomonas/fisiologia , Antioxidantes , Ácido Ascórbico , Expressão Gênica , Glutationa , Mostardeira/genética , Mostardeira/crescimento & desenvolvimento , Mostardeira/microbiologia
20.
Chemosphere ; 234: 769-776, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31238273

RESUMO

Plant growth promoting bacteria (PGPB) have been reported to have the ability to promote plant growth, development and increase heavy metals (HMs) uptake. Therefore, PGPB inoculation as soil remediation agents into plants with larger biomass and potential of phytoextraction is of great importance to increase bioremediation efficiency. In this study, 12 PGPB strains isolated from a cadmium (Cd)/zinc hyperaccumulator Sedum alfredii Hance were inoculated into non-host plant Brassica juncea and their effects on plant growth and Cd uptake were determined. The results showed that inoculation of most PGPB strains promoted plant growth, boosted root development and improved chlorophyll content in the absence of Cd. Inoculation of PGPB strains promoted plant growth up to 111% in shoot and 358% in root when treated with 2 µM Cd. In addition, PGPB inoculation not only ameliorated plant root morphology including the total root length (RL), total surface area (SA), total root volume (RV) and number of root tips (RT), but also facilitated Cd uptake up to 126%. Furthermore, inoculation of PGPB strains promoted plant Cd accumulation up to 261% in shoot and up to 8.93-fold increase in root. Among all the 12 PGPB strains, Burkholdria SaMR10 and Sphingomonas SaMR12 were identified as the promising microbes for improving phytoremediation efficiency of Cd contaminated soils. These results not only provided useful findings for further investigation of interacting mechanisms between different bacterial strains and plants, but also facilitated the development of microbe-assisted phytoremediation application for HM contaminated soil.


Assuntos
Inoculantes Agrícolas , Bactérias/isolamento & purificação , Biodegradação Ambiental , Cádmio/farmacocinética , Poluentes do Solo/metabolismo , Bactérias/metabolismo , Burkholderia/metabolismo , Metais Pesados/farmacocinética , Mostardeira/crescimento & desenvolvimento , Mostardeira/microbiologia , Desenvolvimento Vegetal/efeitos dos fármacos , Sedum/microbiologia , Poluentes do Solo/análise , Sphingomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...