Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124422, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776666

RESUMO

The application of the inner filter effect (IFE) in fluorescent substance determination is gaining popularity. In this paper, a theory of the fluorescence distribution along with the excitation light path is derived from our previous research about the spatial micro-element method. According to the relationship between the summation of fluorescence intensities along the vertical direction at a certain position on the excitation light path and the position, a high-concentration and wide-range fluorescent substance quantification method based on the IFE and fluorescence imaging analysis is proposed. Correspondingly, a high-throughput fluorescent substance quantification detection system is constructed. In order to validate the method, solutions of rhodamine B in different concentrations are used for principle validation, concentration prediction, and experimental investigation on the influence of integration time and lens distortion. The high-throughput system enables the simultaneous measurement of six samples, realizing the high-concentration and wide-range quantification of rhodamine B (100-600 mg/L) with high precision (R2 = 0.9992, MRE = 2.34 %). By setting the filter wheel, the system can measure the concentration of fluorescent substances with different emission wavelengths. The improvement of experimental device is expected to reduce the single sample capacity to tens of microliters and increase the overall sample quantity to tens or even hundreds. The proposed method and system are beneficial to fluorescence measurement in fields such as biomedicine and dye research and to the improvement of high-throughput fluorescence quantitative PCR instruments.

2.
Environ Int ; 187: 108679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657405

RESUMO

Microplastics (MP) and nanoplastics (NP) pollutions pose a rising environmental threat to humans and other living species, given their escalating presence in essential resources that living subjects ingest and/or inhale. Herein, to elucidate the potential health implications of MP/NP, we report for the first time by using label-free hyperspectral stimulated Raman scattering (SRS) imaging technique developed to quantitatively monitor the bioaccumulation and metabolic toxicity of MP/NP within live zebrafish larvae during their early developmental stages. Zebrafish embryos are exposed to environmentally related concentrations (3-60 µg/ml) of polystyrene (PS) beads with two typical sizes (2 µm and 50 nm). Zebrafish are administered isotope-tagged fatty acids through microinjection and dietary intake for in vivo tracking of lipid metabolism dynamics. In vivo 3D quantitative vibrational imaging of PS beads and intrinsic biomolecules across key zebrafish organs reveals that gut and liver are the primary target organs of MP/NP, while only 50 nm PS beads readily aggregate and adhere to the brain and blood vessels. The 50 nm PS beads are also found to induce more pronounced hepatic inflammatory response compared to 2 µm counterparts, characterized by increased biogenesis of lipid droplets and upregulation of arachidonic acid detected in zebrafish liver. Furthermore, Raman-tagged SRS imaging of fatty acids uncovers that MP/NP exposure significantly reduces yolk lipid utilization and promotes dietary lipid storage in zebrafish, possibly associated with developmental delays and more pronounced food dilution effects in zebrafish larvae exposed to 2 µm PS beads. The hyperspectral SRS imaging in this work shows that MP/NP exposure perturbs the development and lipid metabolism in zebrafish larvae, furthering the understanding of MP/NP ingestions and consequent toxicity in different organs in living species.


Assuntos
Metabolismo dos Lipídeos , Microplásticos , Peixe-Zebra , Animais , Microplásticos/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Microscopia Óptica não Linear/métodos , Análise Espectral Raman/métodos , Monitoramento Ambiental/métodos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Poliestirenos/toxicidade
4.
Nano Lett ; 23(23): 11034-11042, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038404

RESUMO

WSe2 has a high mobility of electrons and holes, which is an ideal choice as active channels of electronics in extensive fields. However, carrier-type tunability of WSe2 still has enormous challenges, which are essential to overcome for practical applications. In this work, the direct growth of n-doped few-layer WSe2 is realized via in situ defect engineering. The n-doping of WSe2 is attributed to Se vacancies induced by the H2 flow purged in the cooling process. The electrical measurements based on field effect transistors demonstrate that the carrier type of WSe2 synthesized is successfully transferred from the conventional p-type to the rarely reported n-type. The electron carrier concentration is efficiently modulated by the concentration of H2 during the cooling process. Furthermore, homomaterial inverters and self-powered photodetectors are fabricated based on the doping-type-tunable WSe2. This work reveals a significant way to realize the controllable carrier type of two-dimensional (2D) materials, exhibiting great potential in future 2D electronics engineering.

5.
Phys Rev Lett ; 131(6): 066301, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625039

RESUMO

Though the observation of the quantum anomalous Hall effect and nonlocal transport response reveals nontrivial band topology governed by the Berry curvature in twisted bilayer graphene, some recent works reported nonlinear Hall signals in graphene superlattices that are caused by the extrinsic disorder scattering rather than the intrinsic Berry curvature dipole moment. In this Letter, we report a Berry curvature dipole induced intrinsic nonlinear Hall effect in high-quality twisted bilayer graphene devices. We also find that the application of the displacement field substantially changes the direction and amplitude of the nonlinear Hall voltages, as a result of a field-induced sliding of the Berry curvature hotspots. Our Letter not only proves that the Berry curvature dipole could play a dominant role in generating the intrinsic nonlinear Hall signal in graphene superlattices with low disorder densities, but also demonstrates twisted bilayer graphene to be a sensitive and fine-tunable platform for second harmonic generation and rectification.

6.
Opt Express ; 31(12): 19867-19885, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381393

RESUMO

The quantification of the particle size distribution (PSD) within a particle system is significant to various domains, including atmospheric and environmental sciences, material science, civil engineering, and human health. The scattering spectrum reflects the PSD information of the particle system. Researchers have developed high-precision and high-resolution PSD measurements for monodisperse particle systems through scattering spectroscopy. However, for polydisperse particle systems, current methods based on light scattering spectrum and Fourier transform analysis can only obtain the information of the particle component, but cannot provide the relative content information of each component. In this paper, a PSD inversion method based on the angular scattering efficiency factors (ASEF) spectrum is proposed. By establishing a light energy coefficient distribution matrix, and then measuring the scattering spectrum of the particle system, PSD can be measured in conjunction with inversion algorithms. The simulations and experiments conducted in this paper substantiate the validity of the proposed method. Unlike the forward diffraction approach that measures the spatial distribution of scattered light I(θ) for inversion, our method uses the multi-wavelength distribution information of scattered light ß(λ). Moreover, the influences of noise, scattering angle, wavelength, particle size range, and size discretization interval on PSD inversion are studied. The method of condition number analysis is proposed to identify the appropriate scattering angle, particle size measurement range, and size discretization interval, and it can reduce the root mean square error(RMSE) of PSD inversion. Furthermore, the method of wavelength sensitivity analysis is proposed to select the spectral band with higher sensitivity to particle size changes, thereby improving the computational speed and avoiding the problem of diminished accuracy caused by the reduction of the number of wavelengths used.

7.
Natl Sci Rev ; 10(4): nwac232, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37180357

RESUMO

The recently discovered nonlinear Hall effect (NHE) in a few non-interacting systems provides a novel mechanism for generating second-harmonic electrical Hall signals under time-reversal-symmetric conditions. Here, we introduce a new approach to engineering an NHE by using twisted moiré structures. We found that the twisted WSe2 bilayer exhibited an NHE when the Fermi level was tuned to the moiré flat bands. When the first moiré band was half-filled, the nonlinear Hall signal exhibited a sharp peak with a generation efficiency that was at least two orders of magnitude greater than those obtained in previous experiments. We discuss the possible origins of the diverging generation efficiency in twisted WSe2 based on resistivity measurements, such as moiré-interface-induced correlation effects and mass-diverging-type continuous Mott transition. This study demonstrates not only how interaction effects can combine with Berry curvature dipoles to produce novel quantum phenomena, but also the potential of NHE measurements as a new tool for studying quantum criticality.

8.
Virus Res ; 326: 199065, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754292

RESUMO

The receptor tyrosine kinases TYRO3, AXL, and MERTK (TAM) are transmembrane proteins associated with the regulation of the innate immune response. In this study, the role of the chicken-derived MERTK protein (chMertk) in the regulation of the type I interferon (IFN) signaling pathway and its antiviral effect were investigated in vitro. Newcastle disease (ND) caused by the Newcastle disease virus (NDV) is able to widely spread in chickens and give rise to massive losses in the poultry industry around the world. We found that the overexpression of the exogenous chMertk upregulated the STAT1 phosphorylation and the expression of IFN-stimulated gene IFITM3 and significantly reduced the NDV titer (p < 0.05). A mutation assay showed that three tyrosine residues (Y739, Y743, and Y744) in chMertk promoted STAT1 phosphorylation and inhibited NDV replication. However, the chicken-derived E3 ubiquitin ligase CBL significantly negatively regulated chMertk expression, thus attenuating STAT1 phosphorylation. chMertk function was restored by the ubiquitin-proteasome inhibitor MG132, demonstrating that chMertk was controlled by Casitas B-lineage proto-oncogene (CBL) ubiquitination and degradation. Together, these results suggested that chMertk participated in regulating the immune responses to NDV infection, and that CBL significantly downregulated the expression of chMertk through its ubiquitination and degradation, to maintain cellular homeostasis. Overall, our study provided new insights into the role of chMertk in regulating the innate immune response and its anti-NDV activity.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Galinhas , c-Mer Tirosina Quinase/genética , Fosforilação , Antivirais , Tirosina , Replicação Viral
9.
Sci Total Environ ; 865: 160950, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36565886

RESUMO

Fluorescent substances exist in various aquatic environments and other environmental media. It is a critical task to identify the components accurately and quantify their contents precisely. Based on the Crosstalk Fluorescence Spectroscopy Analysis (CFSA) model, a fluorescence spectroscopic decomposition using the Alternating Gradient Descent (AGD) algorithm is developed. By reducing the residual error of the model through alternating iterations, the CFSA-AGD method achieves unsupervised model training and automatic spectroscopic decomposition without extra experimental operations such as dilution or absorbance measurement, exempting from tedious modeling process. The objectives of this work are to validate that the CFSA-AGD method can comprehensively address the decomposition of fluorescence spectral crosstalk. Furthermore, the novel method is applied to the spectroscopic decomposition of natural FDOMs in aquatic environments as a standard tool. The spectral data analyzing the performance of this method is verified and compared with the conventional methods through the experiment on standard samples. The results indicate that CFSA-AGD has higher spectroscopic decomposition accuracy and gives more abundant information on the characteristic spectra with less residual error than parallel factor analysis. This means that the fluorescence spectra of natural FDOMs can be decomposed into the characteristic fluorescence emission spectra of single components with higher accuracy and the characteristic fluorescence absorption spectra that cannot be obtained by the conventional methods. Meanwhile, it improves the analytical precision of the contents (from R2 ≥ 0.9778 to R2 ≥ 0.9920) and reduces the ultimate residual error by two orders of magnitude (from 1.42 × 10-1 to 4.68 × 10-3) when the method is used to estimate the measured fluorescence spectra.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122147, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36473295

RESUMO

Fluorescence spectroscopy is a reliable and widely used analytical method. The fluorescence inner filter effect (IFE) is one of the main obstacles in the application of fluorescence spectroscopy and an error source in fluorescence analysis, resulting in the fluorescence spectrum distortion, the spectral shape distortion, and the nonlinearity between fluorescence intensity and fluorophore concentration. An optimized parameter reflecting the self-absorption effect - the fluorescence attenuation absorption index of secondary inner filter effect (sIFE) nopt - is proposed in this paper. Considering the received fluorescence in a direction perpendicular to the incident light, it is related to the solute-solvent system of the fluorescent substance, neither the geometric parameters of the cuvette and the light beam nor the concentration of the fluorescent substance. nopt can accurately reflect the degree to which the fluorescence is affected by the sIFE and correct for any non-ideality of the shapes of excitation/emission beams. The principle and determination method of nopt are explained in detail. Accordingly, an algorithm for the fluorescence spectroscopic correction by nopt is designed. To verify the method, the fluorescence spectra and absorbance spectra of the solutions of fluorescein sodium, rhodamine B, rhodamine 6G, and chlorophyll-a with a series of concentration gradients were measured, respectively. The influence of solvent effect on sIFE correction was also studied. The experiments show that different solute-solvent systems of the fluorescent substances have their own nopt. The novel algorithm can determine the nopt, correct the intensity attenuation and the peak red-shift of the fluorescence spectrum caused by the sIFE, expand the linear range of the concentration predicted by the fluorescence intensity, reduce the error of the prediction model, and improve the measurement accuracy.


Assuntos
Algoritmos , Corantes Fluorescentes , Espectrometria de Fluorescência/métodos , Fluoresceína/química , Soluções , Solventes
11.
Sports Biomech ; 22(3): 459-472, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35232315

RESUMO

This study investigated treadmill familiarisation time in different shoe conditions by comparing lower limb consecutive kinematics waveforms using a trend symmetry method to calculate trend symmetry index, range amplitude ratio and range offset. Eighteen young adults (26.6 ± 3.3 years, 7 females) completed three 10-minute running trials at their preferred running speed (2.30 ± 0.17 m/s) on a treadmill with three shoe conditions (i.e., usual, minimalist and maximalist shoes) in a random order. Sagittal lower limb kinematic data were recorded using inertial measurement units. The results showed that sagittal-plane kinematic waveforms in the hip, knee and ankle remained consistent (trend symmetry > 0.95) without extreme excursions (range amplitude ratio ≈ 1) over 10 minutes within each testing shoe condition. Significant time × shoe interaction effect was observed in range offset (i.e., absolute differences in the average degree of kinematic waveforms between consecutive minutes) at ankle (p = 0.029, ŋp2 = 0.096) and knee (p = 0.002, ŋp2 = 0.126). Post-hoc analysis suggested that running with novel shoes required a shorter time to achieve stable lower limb kinematics (2 to 3 minutes) compared with usual shoes (7 minutes). In conclusion, young healthy adults need up to 3 and 7 minutes to familiarise to the treadmill when running at their preferred speed with their novel and usual running shoes.


Assuntos
, Corrida , Feminino , Adulto Jovem , Humanos , Sapatos , Fenômenos Biomecânicos , Extremidade Inferior , Marcha
12.
Res Sports Med ; 31(2): 181-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34278903

RESUMO

Footstrike angle (FSA) has been widely used to classify footstrike pattern (FSP). However, inconsistent FSA cut-off values were adopted in previous studies. This study aimed to validate the FSA cut-off values in runners. Stride index, the gold standard to determine FSP, and FSA were obtained when 15 experienced runners, 14 novice runners and 14 untrained individuals performed 3-min run on an instrumented treadmill at their preferred running speeds in habitual, rearfoot, midfoot and forefoot strike patterns. According to the receiver operating characteristic curve associated with the Youden index, the optimal FSA cut-off values were -0.8° (i.e., cut-off angle for forefoot strike) -7.4° (i.e., cut-off angle for rearfoot strike) for runners. We observed minor differences in the FSA cut-off values across runners with various running experience and a wider cut-off range for midfoot strikers when a modified strike index was utilized. This validation study established cut-off footstrike angles for runners' FSP classification.


Assuntos
, Corrida , Humanos , Fenômenos Biomecânicos , Teste de Esforço , Marcha
13.
Opt Express ; 30(17): 30480-30493, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242151

RESUMO

This paper focuses on the properties of light scattering spectra from a spherical particle and their application for particle size measurement. The influence of particle size and scattering angle on the scattering spectra are investigated and simulated. An ultra-resolution particle dimension measurement method was proposed based on detecting the peak of scattering spectra. An accurate spectral peak location strategy based on the spectral shape features is adopted to reduce the spectra peak positioning error caused by dispersion. The size of smaller particle is measured by locating a wide scattering spectral peak at a larger scattering angle to achieve higher measurement sensitivity, while the size of larger particle is measured by locating a narrow scattering spectral peak at a smaller angle to achieve a larger measurement range. If the spectral resolution of the spectrometer is 0.8 nm, the particle size resolution of 1.1 nm and 8.3 nm are achieved for measured particles with sizes ranging from 0.25µm to 1µm and measured particles with sizes ranging from 1µm to 10µm, respectively. And if the spectrometer with picometer resolution is used, the particle size resolution is expected to be on the order of picometers.

14.
Opt Express ; 30(21): 37470-37483, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258335

RESUMO

Laser-induced breakdown spectroscopy system based on high-repetition-rate microchip laser (HR-LIBS) has been widely used in elemental analysis due to its high energy stability, good portability and fast spectral acquisition speed. However, repeated ablation on powder pellets like soil and coal using HR-LIBS system encounters the problem of serious decline in measurement accuracy. In this work, the relationship between laser ablation and scanning parameters, their correlation with spectral intensity, as well as the optimization approach were fundamentally studied. The correlations among the crater overlapping rate, crater depth and spectral intensity were obtained. An HR-LIBS system with microchip laser (4 kHz repetition rate, 100 µJ laser pulse energy) to perform repeated scanning ablation was established. A theoretical model of the ablation crater morphology for repeated scanning ablation was developed. By taking soil pellets as the experimental samples, the linear fitting curves of crater depth and the spectral intensity ratio were established with the R2 of 0.90∼0.99. The experimental results showed that as the crater depth developed during repeated ablation, the Si-normalized spectral intensity decreased, and thus the spectral repeatability decreased. It was found that by optimizing the overlapping rate to form a flat crater bottom, the confinement effect of the crater on the plasma could be avoided. As a result, the spectral repeatability was significantly improved. The relative standard deviation (RSD) of Si-normalized spectral intensity was improved from 5% to 0.6%. Finally, repeated ablation was performed with the optimized overlapping rate on soil pellets. The R2 of calibration curves of Fe, Mg, Ca, and Al were all above 0.993, and the average RSDs were between 0.5% and 1%. This study provides a fast, accurate, and stable method for the analysis of the samples consisting of various materials with high heterogeneity.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121472, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35717931

RESUMO

Fluorescence quantitative analysis methods are extensively used in biomedicine inspection, petrochemical industry, environmental monitoring, and many other fields in the past decades. When the analyte is composed of multiple compositions, the accuracy of the conventional method declines significantly due to the fluorescence spectral crosstalk. In this research, the interactions between the light and the multiple compositions are comprehensively analyzed. The concepts of the quenching due to mutual absorption and the fluorescence overlapping are considered, and the mechanism of multi-composition fluorescence emission under single-wavelength excitation light is analyzed theoretically. The mixture experiment and the dilution experiment are designed to illustrate that the quenching due to mutual absorption has a significant nonlinear impact on fluorescence quantitative analysis and the mechanism of fluorescence spectral crosstalk gives a good explanation for these experiments. Through the in-depth theoretical analysis, the computer simulation, and the experiments, a novel principle named the Crosstalk Fluorescence Spectroscopy Analysis (CFSA) is proposed and verified, which has much higher quantitative analysis accuracy (R2>0.99 and RMSE≤0.2) than the conventional methods when analyzing the multi-composition samples. Unlike many correction approaches to fluorescence spectroscopy, the novel CFSA can serve as a complete analysis method rather than a correction method. These concepts and the principle are expected to be applied in many practical analysis fields.


Assuntos
Fluorescência , Simulação por Computador , Espectrometria de Fluorescência , Coloração e Rotulagem
16.
Clin Biomech (Bristol, Avon) ; 96: 105672, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35617816

RESUMO

BACKGROUND: This study aimed to investigate the structural, morphological and passive mechanical properties of the medial gastrocnemius muscle among ambulating chronic stroke survivors using a computational model previously established in healthy individuals without stroke. METHODS: Individuals with chronic stroke (n = 14, age = 63.4 ± 6.0 years) and healthy controls (n = 15, age = 59.6 ± 8.4 years) participated in the study. The mechanical properties of the medial gastrocnemius were measured during continuous passive ankle motion using ultrasound elastography and a corresponding muscle mechanical property-angle curve was estimated where slack angle and elasticity were determined. Muscle thickness, fascicle length, pennation angle, and echo intensity were also assessed using B-mode ultrasound. FINDINGS: No significant differences in slack angle (paretic: -16.2° ± 6.13°, non-paretic: -16.93° ± 6.80°, p = 0.82), or slack elasticity (paretic: 4.36 ± 1.94 kPa, non-paretic: 4.54 ± 1.24 kPa, p = 0.64) were found between sides or groups. Lower muscle pennation angle (paretic: 13.6 ± 2.9°, non-paretic: 15.9 ± 2.0°, p = 0.019) and higher echo intensity (paretic: 80.5 ± 13.6, non-paretic: 63.4 ± 17.1, p = 0.003) were observed for paretic muscles. No significant between-sides differences were found for muscle thickness (paretic: 1.5 ± 0.3 cm, non-paretic: 1.6 ± 0.2 cm, p = 0.255) or fascicle length (paretic: 6.6 ± 1.9 cm, non-paretic: 7.1 ± 2.2 cm, p = 0.216). Significant between-groups difference was also observed for fascicle length [non-dominant side (control): 6.2 ± 0.8 cm, paretic side (stroke): 6.6 ± 1.9 cm, p = 0.017]. INTERPRETATION: Although muscle mechanical properties increased exponentially over the slack ankle, measures between paretic and non-paretic sides were similar in ambulating participants with chronic stroke. Side-to-side differences in structural and morphological measures suggest the impact of stroke was relatively more pronounced for these muscle parameters than for passive mechanical properties.


Assuntos
Técnicas de Imagem por Elasticidade , Acidente Vascular Cerebral , Idoso , Tornozelo , Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/fisiologia , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Ultrassonografia
17.
JMIR Serious Games ; 10(1): e32117, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188466

RESUMO

BACKGROUND: The incidence of dementia is increasing annually, resulting in varying degrees of adverse effects for individuals, families, and society. With the continuous development of computer information technology, cognitive interventions are constantly evolving. The use of immersive virtual reality (IVR) as a cognitive intervention for older adults with mild cognitive impairment (MCI) and mild dementia (MD) is promising, although only few studies have focused on its use. OBJECTIVE: The Chinese virtual supermarket (CVSM) IVR system was developed to provide a comprehensive and individual cognitive intervention program for older patients with MCI and MD. The aim of this study was to explore the feasibility and clinical effectiveness of this 5-week IVR-based cognitive intervention. METHODS: A pretest-posttest study design was conducted with 31 older adults with MCI and MD from August 2020 to January 2021. All participants participated in a 5-week immersive virtual cognitive training program using the CVSM system. Feasibility was assessed as the incidence and severity of cybersickness symptoms and participant satisfaction based on questionnaires conducted after the intervention. Clinical effectiveness was evaluated using neuropsychological assessments, including several commonly used measures of cognitive function, depression, perceived stress, and activities of daily living. Measurements were obtained at baseline and after the intervention period. RESULTS: A total of 18 patients with MCI (mean age 82.94 [SD 5.44] years; 12 females) and 13 patients with MD (mean age 85.7 [SD 4.67] years, 10 females) participated in this pilot study. Both groups showed significant improvements in all cognitive function measurements (P<.001). The MD group had a significantly greater improvement in general cognitive function compared to the MCI group in Montreal Cognitive Assessment Scale, Symbol Digit Modalities Test, Shape Trail Test, and Auditory Verbal Learning Test. Furthermore, an intervention effect was observed in the improvement of perceived stress (P=.048 for MD group, P=.03 for MCI group ). CONCLUSIONS: The use of the CVSM system may be effective in enhancing the cognitive function of patients with MCI and MD, including general cognitive function, memory, executive function, and attention. IVR technology enriches cognitive intervention approaches and provides acceptable, professional, personalized, and interesting cognitive training for older adults with cognitive impairment. TRIAL REGISTRATION: ClinicalTrials ChiCTR2100043753; https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR2100043753.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120831, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999356

RESUMO

In the determination of chlorophyll with the fluorescence method in the natural water, the suspended particles and colloids will seriously interfere with the incident light and the fluorescence. Based on the analysis of the interaction between light and the measured substances, a high sensitivity, wide range of chlorophyll-a concentration measurement strategy, which combines optical information of fluorescence and absorbance with the CCD integration time transformation method, is proposed. Correspondingly, a novel algorithm, which can significantly correct the attenuation of incident light due to the absorption of suspended particles and the deviation of detected fluorescence caused by the scattered light and reflected light, is proposed to realize turbidity compensation. For verification, a self-designed compact optical experimental device consisting of a single LED and a linear CCD was set up to obtain the fluorescence spectrum and absorbance spectrum simultaneously. The experimental results demonstrate that the compensation strategy can commendably compensate for the impact of the suspended particles. The relative error of chlorophyll-a measurement is less than 5%, even in a high turbidity environment. Furthermore, the minimum detection limit is significantly reduced from conventional 0.01 µg/L to 0.0025 µg/L in the range of 0.0025-130 µg/L with the CCD integration time transformation method, which improves the measurement sensitivity. This device and method have the potential to be applied to the in situ online measurement of chlorophyll-a concentration in natural water.


Assuntos
Clorofila , Dispositivos Ópticos , Clorofila A , Fluorescência , Água
19.
Front Neurol ; 12: 742260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970204

RESUMO

Objective: To assess the short-term effects of strenuous dynamic stretching of the elbow joint using an intelligent stretching device in chronic spastic stroke survivors. Methods: The intelligent stretching device was utilized to provide a single session of intensive stretching to the spastic elbow joint in the sagittal plane (i.e., elbow flexion and extension). The stretching was provided to the extreme range, safely, with control of the stretching velocity and torque to increase the joint range of motion (ROM) and reduce spasticity and joint stiffness. Eight chronic stroke survivors (age: 52.6 ± 8.2 years, post-stroke duration: 9.5 ± 3.6 years) completed a single 40-min stretching intervention session. Elbow passive and active ROM, strength, passive stiffness (quantifying the non-reflex component of spasticity), and instrumented tendon reflex test of the biceps tendon (quantifying the reflex component of the spasticity) were measured before and after stretching. Results: After stretching, there was a significant increase in passive ROM of elbow flexion (p = 0.021, r = 0.59) and extension (p = 0.026, r = 0.59). Also, elbow active ROM and the spastic elbow flexors showed a trend of increase in their strength. Conclusion: The intelligent stretching had a short-term positive influence on the passive movement ROM. Hence, intelligent stretching can potentially be used to repeatedly and regularly stretch spastic elbow joints, which subsequently helps to reduce upper limb impairments post-stroke.

20.
Anal Chim Acta ; 1181: 338904, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556221

RESUMO

Electro-Fenton (EF) process is a significant water treatment method for the degradation of dissolved organic matter (DOM) in water and has been widely studied and applied in the past decade to degrade various dissolved organics. During water treatment, in order to monitor the degradation efficiency, it is in dire need to develop rapid and accurate methods that are favorable to assay on-line and on-site to provide feedback in a timely manner. UV-Visible absorption spectroscopy and Excitation-Emission Matrix (EEM) fluorescence spectroscopy techniques are most potential to realize on-line DOM measurement, but the measurement accuracy is unsatisfactory because of the obligatory involvement of iron-containing interferents. This study aims to simplify the measurement system complexity while overcoming the effect of iron-containing interferents during the measurement. An intrinsic relationship between the measured DOM concentration and the ultraviolet absorption at λ1 and the light intensities of the fluorescence emission at λ2 is derived theoretically and proved, based on which the influence of iron ions and their complexes on the spectrum can be eliminated, thus the content of DOM in the Electro-Fenton process is accurately determined. The proposed dual wavelength analysis with combination of fluorescence emission and ultraviolet absorption spectroscopy can achieve high precision (R2=0.9882,RMSE=0.0131mg/L). Furthermore, the on-line measurement design, called ultraviolet absorption-fluorescence emission dual wavelength analyzer, only includes one ultraviolet LED and two photodetectors. Its structure is simple and suitable for on-line monitoring DOM in EF process.


Assuntos
Compostos Orgânicos , Purificação da Água , Substâncias Húmicas/análise , Ferro , Espectrometria de Fluorescência , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...