Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Exp Eye Res ; 242: 109860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467174

RESUMO

Recent studies have highlighted that retinal neurodegeneration precedes microvascular changes in diabetic retinopathy (DR), but the specific mechanisms remain unclear. Given the pivotal role of dysfunctional mitochondria and oxidative stress in early DR, our objective was to observe mitochondria-related alterations in the neural retina of type one diabetic mellitus mice with no evidence of DR (T1DM-NDR). We aimed to identify the key mitochondrial-related proteins contributing to mitochondrial injury. Our study revealed that T1DM-NDR mice exhibited outer retina thinning, including the ellipsoid zone, inner segment, and outer segment. Additionally, there was an impaired amplitude of the b-wave in electroretinogram (ERG) and a disorganized arrangement of the photoreceptor layer. In both the retina of DM mice and high glucose (HG)-treated 661w cells, mitochondria appeared swollen and fragmented, with disrupted cristae, disorganized or shortened branches in the mitochondrial network, and decreased mitochondrial membrane potential. Among the mitochondrial-related proteins, dynamin-related protein 1 (Drp1) was upregulated, and the ratio of phosphorylated Drp1 protein at serine 616 (S616) and serine 637 (S637) sites significantly increased in the retina of DM mice. The administration of Mdivi-1 ameliorated high-glucose-induced dysfunctional mitochondria, thereby protecting T1DM-NDR mice retina from morphological and functional injuries. Our findings suggest that hyperglycemia promotes Drp1-mediated mitochondrial dysfunction, which may be a significant factor in the development of DR. The inhibition of high-glucose-induced mitochondrial fission emerges as a potential and innovative intervention strategy for preventing DR.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Dinaminas , Eletrorretinografia , Camundongos Endogâmicos C57BL , Mitocôndrias , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Camundongos , Dinaminas/metabolismo , Dinaminas/genética , Mitocôndrias/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Western Blotting
2.
Nanoscale ; 15(27): 11544-11559, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37366254

RESUMO

Photoacoustic (PA) imaging using contrast agents with strong near-infrared-II (NIR-II, 1000-1700 nm) absorption enables deep penetration into biological tissue. Besides, biocompatibility and biodegradability are essential for clinical translation. Herein, we developed biocompatible and biodegradable germanium nanoparticles (GeNPs) with high photothermal stability as well as strong and broad absorption for NIR-II PA imaging. We first demonstrate the excellent biocompatibility of the GeNPs through experiments, including the zebrafish embryo survival rates, nude mouse body weight curves, and histological images of the major organs. Then, comprehensive PA imaging demonstrations are presented to showcase the versatile imaging capabilities and excellent biodegradability, including in vitro PA imaging which can bypass blood absorption, in vivo dual-wavelength PA imaging which can clearly distinguish the injected GeNPs from the background blood vessels, in vivo and ex vivo PA imaging with deep penetration, in vivo time-lapse PA imaging of a mouse ear for observing biodegradation, ex vivo time-lapse PA imaging of the major organs of a mouse model for observing the biodistribution after intravenous injection, and notably in vivo dual-modality fluorescence and PA imaging of osteosarcoma tumors. The in vivo biodegradation of GeNPs is observed not only in the normal tissue but also in the tumor, making the GeNPs a promising candidate for clinical NIR-II PA imaging applications.


Assuntos
Germânio , Nanopartículas , Técnicas Fotoacústicas , Camundongos , Animais , Meios de Contraste/farmacologia , Técnicas Fotoacústicas/métodos , Distribuição Tecidual , Peixe-Zebra , Fototerapia/métodos
3.
New Phytol ; 237(3): 914-929, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266950

RESUMO

Plants perceive pathogens and induce robust transcriptional reprogramming to rapidly achieve immunity. The mechanisms of how immune-related genes are transcriptionally regulated remain largely unknown. Previously, the trihelix transcriptional factor ARABIDOPSIS SH4-RELATED 3 (ASR3) was shown to negatively regulate pattern-triggered immunity (PTI) in Arabidopsis thaliana. Here, we identified another trihelix family member ASR3-Interacting Transcriptional Factor 1 (AITF1) as an interacting protein of ASR3. ASR3-Interacting Transcriptional Factor 1 and ASR3 form heterogenous and homogenous dimers in planta. Both aitf1 and asr3 single mutants exhibited increased resistance against the bacterial pathogen Pseudomonas syringae, but the double mutant showed reduced resistance, suggesting AITF1 and ASR3 interdependently regulate immune gene expression and resistance. Overexpression of AITF1 triggered autoimmunity dependently on its DNA-binding ability and the presence of ASR3. Notably, autoimmunity caused by overexpression of AITF1 was dependent on a TIR-NBS-LRR (TNL) protein suppressor of AITF1-induced autoimmunity 1 (SAA1), as well as enhanced disease susceptibility 1 (EDS1), the central regulator of TNL signaling. ASR3-Interacting Transcriptional Factor 1 and ASR3 directly activated SAA1 expression through binding to the GT-boxes in SAA1 promoter. Collectively, our results revealed a mechanism of trihelix transcription factor complex in regulating immune gene expression, thereby modulating plant disease resistance and autoimmunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo
4.
Open Biol ; 12(10): 220172, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36285442

RESUMO

HOXA9 and MEIS1 are co-expressed in over 50% of acute myeloid leukaemia (AML) and play essential roles in leukaemogenesis, but the mechanisms involved are poorly understood. Diverse animal models offer valuable tools to recapitulate different aspects of AML and link in vitro studies to clinical trials. We generated a double transgenic zebrafish that enables hoxa9 overexpression in blood cells under the draculin (drl) regulatory element and an inducible expression of meis1 through a heat shock promoter. After induction, Tg(drl:hoxa9;hsp70:meis1) embryos developed a preleukaemic state with reduced myeloid and erythroid differentiation coupled with the poor production of haematopoietic stem cells and myeloid progenitors. Importantly, most adult Tg(drl:hoxa9;hsp70:meis1) fish at 3 months old showed abundant accumulations of immature myeloid precursors, interrupted differentiation and anaemia in the kidney marrow, and infiltration of myeloid precursors in peripheral blood, resembling human AML. Genome-wide transcriptional analysis also confirmed AML transformation by the transgene. Moreover, the dihydroorotate dehydrogenase (DHODH) inhibitor that reduces leukaemogenesis in mammals effectively restored haematopoiesis in Tg(drl:hoxa9;hsp70:meis1) embryos and improved their late survival. Thus, Tg(drl:hoxa9;hsp70:meis1) zebrafish is a rapid-onset high-penetrance AML-like disease model, which provides a novel tool to harness the unique advantages of zebrafish for mechanistic studies and drug screening against HOXA9/MEIS1 overexpressed high-risk AML.


Assuntos
Leucemia Mieloide Aguda , Peixe-Zebra , Animais , Pré-Escolar , Humanos , Animais Geneticamente Modificados , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mamíferos , Proteína Meis1/genética , Proteínas de Neoplasias/metabolismo , Penetrância , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Toxicol Appl Pharmacol ; 450: 116162, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35830948

RESUMO

Pathological angiogenesis is fundamental to progression of cancerous tumors and blinding eye diseases. Anti-angiogenic receptor tyrosine kinase inhibitors (TKIs) are in broad use for the treatment of these diseases. With more and more TKIs available, it is a challenge to make an optimal choice. It remains unclear whether TKIs demonstrate similar anti-angiogenesis activities in different tissues. Many TKIs have shown varying degrees of toxic effects that should also be considered in clinical use. This study investigates the anti-angiogenic effects of 13 FDA-approved TKIs on the intersegmental vessels (ISVs), subintestinal vessels (SIVs) and retinal vasculature in zebrafish embryos. The results show that vascular endothelial growth factor receptor TKIs (VEGFR-TKIs) exhibit anti-angiogenic abilities similarly on ISVs and SIVs, and their efficacy is consistent with their IC50 values against VEGFR2. In addition, VEGFR-TKIs selectively induces the apoptosis of endothelial cells in immature vessels. Among all TKIs tested, axitinib demonstrates a strong inhibition on retinal neovascularization at a low dose that do not strongly affect ISVs and SIVs, supporting its potential application for retinal diseases. Zebrafish embryos demonstrate cardiotoxicity after VEGFR-TKIs treatment, and ponatinib and sorafenib show a narrow therapeutic window, suggesting that these two drugs may need to be dosed more carefully in patients. We propose that zebrafish is an ideal model for studying in vivo antiangiogenic efficacy and cardiotoxicity of TKIs.


Assuntos
Neoplasias , Peixe-Zebra , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/toxicidade , Animais , Cardiotoxicidade/tratamento farmacológico , Células Endoteliais/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/metabolismo
6.
BMC Biol ; 20(1): 165, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864475

RESUMO

BACKGROUND: Enhancers are cis-regulatory elements present in eukaryote genomes, which constitute indispensable determinants of gene regulation by governing the spatiotemporal and quantitative expression dynamics of target genes, and are involved in multiple life processes, for instance during development and disease states. The importance of enhancer activity has additionally been highlighted for immune responses in animals and plants; however, the dynamics of enhancer activities and molecular functions in plant innate immunity are largely unknown. Here, we investigated the involvement of distal enhancers in early innate immunity in Arabidopsis thaliana. RESULTS: A group of putative distal enhancers producing low-abundance transcripts either unidirectionally or bidirectionally are identified. We show that enhancer transcripts are dynamically modulated in plant immunity triggered by microbe-associated molecular patterns and are strongly correlated with open chromatin, low levels of methylated DNA, and increases in RNA polymerase II targeting and acetylated histone marks. Dynamic enhancer transcription is correlated with target early immune gene expression patterns. Cis motifs that are bound by immune-related transcription factors, such as WRKYs and SARD1, are highly enriched within upregulated enhancers. Moreover, a subset of core pattern-induced enhancers are upregulated by multiple patterns from diverse pathogens. The expression dynamics of putative immunity-related enhancers and the importance of WRKY binding motifs for enhancer function were also validated. CONCLUSIONS: Our study demonstrates the general occurrence of enhancer transcription in plants and provides novel information on the distal regulatory landscape during early plant innate immunity, providing new insights into immune gene regulation and ultimately improving the mechanistic understanding of the plant immune system.


Assuntos
Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Fatores de Transcrição/genética
7.
Front Cardiovasc Med ; 9: 896810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651907

RESUMO

Introduction: Various cytokines were involved in the process of atherosclerosis, and their serum levels were correlated with coronary artery disease (CAD) to varying degrees. However, there were limited reports about the correlation between serum cytokines and the severity of coronary atherosclerotic lesion in patients with non-acute myocardial infarction (AMI). The purpose of this study was to investigate the relationship between serum cytokines and the severity of CAD, and identify the predictors of severe CAD in patients suspected to have CAD but AMI had been ruled out. Methods: A total of 502 patients who had suspected CAD and underwent coronary angiography were enrolled. The serum levels of IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, TNF-α, IFN-α,and IFN-γ were determined by multiplexed particle-based flow cytometric assays technology. And the severity of CAD was evaluated by Gensini score (GS). Results: The serum levels of IL-4, IL-12p70, IL-17, and IFN-α were significantly lower in the severe CAD group (GS≥30) than those in the non-severe CAD group (GS < 30). And IL-12p70 and IL-17 were negatively correlated with the severity of CAD. Multivariate logistic regression analyses demonstrated that two serum cytokines (IL-12p70 and IL-17), one clinical protective factor (HDL-C), and two clinical risk factors (gender and diabetes) were the independent predictors of severe CAD. ROC curve analysis showed that multivariate mode combined these predictors had a good performance in predicting severe CAD. Conclusion: The combination of serum cytokines (IL-12p70 and IL-17) and clinical risk factors (HDL-C, gender, and diabetes) may help identify patients with more severe coronary artery lesions from those with suspected CAD but not AMI, and may contribute to guiding the risk stratification for patients with chest discomfort in health care facilities without sufficient medical resources (especially cardiac catheterization resources).

8.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742884

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has up to half the tumor mass of tumor-associated myeloid cells. Myeloid innate immune cells play important roles in regulating cancer cell recognition and tumor growth. PDAC cells often mold myeloid cells into pro-tumoral state to fuel cancer growth and induce immune suppression. However, how tumor cells educate the innate immune responses remains largely unknown. In this study, we used four different human PDAC cell lines (PANC1, BxPC3, AsPC1, and CFPAC1) to establish the zebrafish xenograft model and investigated the interaction between pancreatic cancer and innate immune cells. The primary tumor-derived cancer cells PANC1 and BxPC3 activated innate immune anti-tumoral responses efficiently, while cancer cells from metastatic tissues AsPC1 and CFPAC1 induced an innate immune suppression and educated innate immune cells towards pro-tumoral state. Chemical conversion of innate immune cells to anti-tumoral state inhibited tumor growth for AsPC1 and CFPAC1. Moreover, genetic and pharmacological inhibition of macrophages also significantly reduced tumor growth, supporting the important roles of macrophages in innate immune suppression. REG4 expression is high in AsPC1 and CFPAC1. Knockdown of REG4 induced innate immune activation and reduced tumor growth in the xenografts, indicating that REG4 is a beneficial target for PDAC therapy. Our study provides a fast in-vivo model to study PDAC-innate immune interaction and their plasticity that could be used to study the related mechanism as well as identify new drugs to enhance immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Imunidade Inata , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Peixe-Zebra , Neoplasias Pancreáticas
9.
Dis Markers ; 2022: 1504137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392493

RESUMO

Background and Aims: Obstructive sleep apnea (OSA) is strongly associated with obesity, metabolic diseases, coronary artery disease (CAD), stroke, hypertension, and other disorders. This study assessed the relationship between circulating a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13 (ADAMTS13) levels and the presence of OSA. Materials and Methods: This cross-sectional study included a total of 223 patients. We used a powerful high-throughput multiplexed immunobead-based assay to detect circulating levels of ADAMTS13. The associations between circulating ADAMTS13 levels and OSA were evaluated by multivariate logistic regression analysis. Results: Circulating ADAMTS13 levels were significantly elevated in patients with OSA compared with controls (0.8 vs. 2.7 µg/mL, respectively, P < 0.001). After adjusting for confounding factors, circulating ADAMTS13 levels were significantly independently associated with the presence of OSA (odds ratio = 9.96, 95% confidence interval (CI) =4.11-24.13, P < 0.001). Furthermore, circulating ADAMTS13 levels showed discriminatory accuracy in assessing the presence of OSA (area under the curve: 0.87, 95% CI 0.81-0.93, P < 0.001). Conclusion: Circulating ADAMTS13 levels were significantly correlated with the presence of OSA. ADAMTS13 may therefore function as a novel biomarker for monitoring the development and progression of OSA.


Assuntos
Proteína ADAMTS13 , Doença da Artéria Coronariana , Apneia Obstrutiva do Sono , Proteína ADAMTS13/sangue , Biomarcadores/sangue , Doença da Artéria Coronariana/complicações , Estudos Transversais , Humanos , Razão de Chances , Fatores de Risco , Apneia Obstrutiva do Sono/diagnóstico
10.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409193

RESUMO

Gene expression is tightly regulated during hematopoiesis. Recent studies have suggested that RNA polymerase II (Pol II) promoter proximal pausing, a temporary stalling downstream of the promoter region after initiation, plays a critical role in regulating the expression of various genes in metazoans. However, the function of proximal pausing in hematopoietic gene regulation remains largely unknown. The negative elongation factor (NELF) complex is a key factor important for this proximal pausing. Previous studies have suggested that NELF regulates granulocytic differentiation in vitro, but its in vivo function during hematopoiesis remains uncharacterized. Here, we generated the zebrafish mutant for one NELF complex subunit Nelfb using the CRISPR-Cas9 technology. We found that the loss of nelfb selectively induced excessive granulocytic development during primitive and definitive hematopoiesis. The loss of nelfb reduced hematopoietic progenitor cell formation and did not affect erythroid development. Moreover, the accelerated granulocytic differentiation and reduced progenitor cell development could be reversed by inhibiting Pol II elongation. Further experiments demonstrated that the other NELF complex subunits (Nelfa and Nelfe) played similar roles in controlling granulocytic development. Together, our studies suggested that NELF is critical in controlling the proper granulocytic development in vivo, and that promoter proximal pausing might help maintain the undifferentiated state of hematopoietic progenitor cells.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Animais , Regulação da Expressão Gênica , RNA Polimerase II/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
11.
J Genet Genomics ; 49(8): 796-809, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35288370

RESUMO

Plants recognize microbe-associated molecular patterns (MAMPs) to activate immune responses and defense priming to defend against pathogen infections. Transcriptional regulation of gene expression is crucial for plant immunity and is mediated by multiple factors, including DNA methylation. However, it remains unknown whether and how DNA demethylation contributes to immune responses in MAMP-triggered immunity. Here, we report that active DNA demethylation is required for MAMP-triggered immunity to bacterial pathogens. The rdd-2 triple mutant carrying mutations in ROS1, DML2, and DML3 that encode DNA glycosylases, which are key DNA demethylation enzymes, exhibits compromised immune responses triggered by the MAMPs flg22 and elf18. Genome-wide methylome analysis reveals that flg22 induces rapid and specific DNA demethylation in an RDD-dependent manner. The expression levels of salicylic acid signaling-related and phytoalexin biosynthesis-related genes are tightly associated with the flg22-induced promoter demethylation. The compromised accumulation of priming compounds and antimicrobial metabolites ultimately leads to a defense priming defect in the rdd-2 mutant. Our results reveal the critical role of active DNA demethylation in the MAMP-triggered immune response and provide unique insight into the molecular mechanism of flg22-modulated DNA demethylation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Glicosilases , Desmetilação do DNA , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas
12.
Plant Cell ; 34(5): 1666-1683, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35043960

RESUMO

The bacterial pathogen Ralstonia solanacearum causes wilt disease on Arabidopsis thaliana and tomato (Solanum lycopersicum). This pathogen uses type III effectors to inhibit the plant immune system; however, how individual effectors interfere with plant immune responses, including transcriptional reprograming, remain elusive. Here, we show that the type III effector RipAB targets Arabidopsis TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA) transcription factors, the central regulators of plant immune gene regulation, via physical interaction in the nucleus to dampen immune responses. RipAB was required for R. solanacearum virulence on wild-type tomato and Arabidopsis but not Arabidopsis tga1 tga4 and tga2 tga5 tga6 mutants. Stable expression of RipAB in Arabidopsis suppressed the pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) burst and immune gene induction as well as salicylic acid (SA) regulons including RBOHD and RBOHF, responsible for ROS production, all of which were phenocopied by the tga1 tga4 and tga2 tga5 tga6 mutants. We found that TGAs directly activate RBOHD and RBOHF expression and that RipAB inhibits this through interfering with the recruitment of RNA polymerase II. These results suggest that TGAs are the bona fide and major virulence targets of RipAB, which disrupts SA signaling by inhibiting TGA activity to achieve successful infection.


Assuntos
Arabidopsis , Ralstonia solanacearum , Solanum lycopersicum , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Biofactors ; 48(1): 86-99, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34882872

RESUMO

Increasing evidence suggests that hypothyroidism aggravates atherosclerosis. Macrophage apoptosis plays a significant role in the development of atherosclerotic plaque. We aimed to explore the effect of thyroid hormones on macrophage apoptosis induced by oxidized low-density lipoprotein (oxLDL). Peripheral blood samples from 20 patients (normal group, hypothyroidism group, coronary artery disease [CAD] group, hypothyroidism + CAD group) were collected to perform messenger RNA microarray analysis. Bioinformatics analysis identified apoptosis and mitogen-activated protein kinase (MAPK) signaling as differentially expressed pathways between CAD and hypothyroidism + CAD group. In vitro, thyroid hormones concentration-dependently promoted cell survival and inhibited apoptosis in oxLDL-treated RAW264.7 macrophages, along with elevated extracellular signal-regulated kinases 1 and 2 (Erk1/2) phosphorylation. The STRING database showed an interaction of thyroid hormone receptor alpha1 (TRα1) and MAPK pathway. TRα1 knockdown increased cell apoptosis and decreased Erk1/2 phosphorylation. Erk1/2 inhibitor aggravated macrophage apoptosis. Moreover, thyroid hormones inhibited oxidative stress in oxLDL-treated macrophages. The study indicates that thyroid hormones concentration-dependently attenuate oxLDL-induced macrophage apoptosis through activating TRα1-Erk1/2 pathway and inhibiting oxidative stress, which implies a potential mechanism of hypothyroid-accelerated atherosclerosis.


Assuntos
Lipoproteínas LDL , Macrófagos , Apoptose , Humanos , Lipoproteínas LDL/farmacologia , Macrófagos/metabolismo , Hormônios Tireóideos/genética , Hormônios Tireóideos/farmacologia
14.
Clin Biochem ; 93: 50-58, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33861985

RESUMO

OBJECTIVE: C1q has been shown to be associated with coronary heart disease (CAD) and can co-deposit with C-reactive protein (CRP) in atherosclerotic plaques. However, few studies have been conducted between C1q, CRP parameters and CAD. The aim of this study is to explore the relationship between C1q and CRP parameters and assess their clinical significance in CAD. METHODS: 238 total patients who underwent coronary artery angiography were enrolled and divided into control group (n = 65), stable CAD group (n = 47) and unstable angina group (UA group, n = 126). Patients' data were collected from self-administered questionnaires and electrical medical records. The severity of coronary stenosis was presented by Gensini score. The relationship between C1q, CRP parameters and CAD were evaluated by multivariate regression analysis and their predicting performance were assessed by ROC analysis and odds ratio analysis. RESULTS: Compared with control group, C1q was showed significantly lower in stable CAD (P = 0.004) and UA groups (P = 0.008), while hsCRP was higher in UA group (P = 0.024). Serum C1q was weakly positively associated with hsCRP (r = 0.24, P < 0.001) but not correlated with Gensini score. Logistic regression identified C1q (OR: 0.87 per 10 mg/L, 95% CI: 0.79-0.95, P = 0.001) and hsCRP (OR: 1.08 mg/L, 95% CI: 1.01-1.15, P = 0.032) as independent determinants of CAD. Furthermore, combined C1q and hsCRP level showed higher discriminatory accuracy in predicting CAD than C1q (AUC: 0.676 vs 0.585, P = 0.101; NRI: 10.4%, P = 0.049; IDI: 3.9%, P < 0.001) or hsCRP (AUC: 0.676 vs 0.585, P = 0.101; NRI: 16.7%, P = 0.006; IDI: 5.8%, P < 0.001). CONCLUSIONS: Reduced serum C1q and increased hsCRP are independently associated with CAD and could be potential predictors for CAD diagnosis. Furthermore, combined C1q and hsCRP showed better performance in predicting CAD than using single one.


Assuntos
Proteína C-Reativa/metabolismo , Complemento C1q/metabolismo , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Idoso , Angina Instável/diagnóstico , Angina Instável/metabolismo , Biomarcadores/sangue , Angiografia Coronária , Estenose Coronária/diagnóstico , Estenose Coronária/metabolismo , Estudos Transversais , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Valor Preditivo dos Testes , Curva ROC , Fatores de Risco , Índice de Gravidade de Doença , Estatísticas não Paramétricas
15.
Cardiovasc Drugs Ther ; 35(3): 599-612, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32495070

RESUMO

PURPOSE: Hypothyroidism (HT) is associated with accelerated atherosclerosis (AS). The efficacy of traditional strategies of hypothyroid AS remains controversial. Here, we aimed to deepen the understanding of the HT-induced acceleration of AS, to decrease the residual risk of coronary artery disease (CAD) and to find a new therapeutic target. METHODS: We collected peripheral venous blood samples from 20 patients and divided them into 4 groups, namely, the normal group, the HT group, the CAD group and the HT + CAD group. Then we performed mRNA microarray analysis and bioinformatics analysis to screen the differentially expressed genes and pathways, and we also conducted validations on ApoE knockout mice models and Raw264.7 cell models. RESULTS: In short, (1) in the analysis between the CAD group and the HT + CAD group, we found a total of 1218 differentially expressed genes, 11 upregulated pathways and 40 downregulated pathways. (2) We validated that patients with HT and CAD had a significantly decreased expression of MAP3K7 (encoding transforming growth factor-ß-activated kinase 1, TAK1) gene than normal subjects. (3) In animal and cell experiments, we found the decreased expression of TAK1 and the reduced phosphorylation of AMP-activated protein kinase (AMPK) under the hypothyroid and atherosclerotic condition. (4) Changes in the expressions of TAK1 may affect the progression of AS. CONCLUSION: Taken together, these data suggest that the accelerated AS in hypothyroid patients may be due to the suppression of TAK1-AMPK pathway in macrophages. This new finding may become a novel therapeutic target in hypothyroid AS.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aterosclerose/fisiopatologia , Hipotireoidismo/fisiopatologia , Macrófagos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Aterosclerose/etiologia , Regulação para Baixo/fisiologia , Humanos , Hipotireoidismo/complicações , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Células RAW 264.7 , RNA Mensageiro , Distribuição Aleatória , Transdução de Sinais , Regulação para Cima/fisiologia
16.
BMC Genomics ; 21(1): 880, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33297944

RESUMO

BACKGROUND: Late blight disease (LBD) caused by the pathogen Phytophthora infestans (PI), is the most devastating disease limiting potato (Solanum tuberosum) production globally. Currently, this disease pathogen is re-emerging and appearing in new areas at a very high intensity. A better understanding of the natural defense mechanisms against PI in different potato cultivars especially at the protein level is still lacking. Therefore, to elucidate potato proteome response to PI, we investigated changes in the proteome and leaf morphology of three potato cultivars, namely; Favorita (FA), Mira (MA), and E-malingshu N0.14 (E14) infected with PI by using the iTRAQ-based quantitative proteomics analysis. RESULTS: A total of 3306 proteins were found in the three potato genotypes, and 2044 proteins were quantified. Cluster analysis revealed MA and E14 clustered together separately from FA. The protein profile and related functions revealed that the cultivars shared a typical hypersensitive response to PI, including induction of elicitors, oxidative burst, and suppression of photosynthesis in the potato leaves. Meanwhile, MA and E14 deployed additional specific response mechanism different from FA, involving high induction of protease inhibitors, serine/threonine kinases, terpenoid, hormone signaling, and transport, which contributed to MA tolerance of LBD. Furthermore, inductions of pathogenesis-related proteins, LRR receptor-like kinases, mitogen-activated protein kinase, WRKY transcription factors, jasmonic acid, and phenolic compounds mediate E14 resistance against LBD. These proteins were confirmed at the transcription level by a quantitative polymerase chain reaction and at the translation level by western-blot. CONCLUSIONS: We found several proteins that were differentially abundant among the cultivars, that includes common and cultivar specific proteins which highlighted similarities and significant differences between FA, MA, and E14 in terms of their defense response to PI. Here the specific accumulation of mitogen-activated protein kinase, Serine/threonine kinases, WRKY transcription played a positive role in E14 immunity against PI. The candidate proteins identified reported in this study will form the basis of future studies and may improve our understanding of the molecular mechanisms of late blight disease resistance in potato.


Assuntos
Phytophthora infestans , Solanum tuberosum , China , Doenças das Plantas/genética , Proteômica , Solanum tuberosum/genética
17.
J Interv Card Electrophysiol ; 58(3): 369-379, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32472281

RESUMO

PURPOSE: Obstructive sleep apnea (OSA) is associated with the management of atrial fibrillation (AF). This manuscript aims to discuss the effects of continuous positive airway pressure (CPAP) in patients with rhythm control strategies and patients with different ages, weights and length of follow-up. METHODS: We searched Embase, PubMed, Cochrane, Web of Science and Ovid for relevant studies (from inception to 7 July 2019; English). The primary outcome was documented AF recurrence in CPAP users and nonusers. We assessed pooled data by use of a random-effects model. RESULTS: Nine prospective cohort studies with a total of 2134 participants met the inclusion criteria. Results showed that complementary CPAP therapy reduced AF recurrence (RR = 0.63; 95% CI, 0.56-0.72). In subgroup analyses, the benefits of CPAP were stronger in patients younger than 60 years old (< 60 years old: RR, 0.59; 95% CI, 0.50-0.68 vs. ≥ 60 years old: RR, 0.73; 95% CI, 0.59-0.91), with a body mass index (BMI) of less than 30 (< 30: RR, 0.53; 95% CI, 0.37-0.77 vs. ≥ 30: RR, 0.65; 95% CI, 0.55-0.77) or with less follow-up time (≤ 1 year: RR, 0.57; 95% CI, 0.42-0.79 vs. > 1 year: RR, 0.64; 95% CI, 0.53-0.78). CONCLUSIONS: Complementary CPAP therapy reduces the risk of AF recurrence in OSA patients with rhythm control strategies. In addition to weight control and early AF intervention, CPAP compliance should be recommended along with periodic adjustments as necessary.


Assuntos
Fibrilação Atrial , Apneia Obstrutiva do Sono , Fibrilação Atrial/terapia , Pressão Positiva Contínua nas Vias Aéreas , Humanos , Estudos Prospectivos , Recidiva , Apneia Obstrutiva do Sono/terapia
18.
Clin Chim Acta ; 508: 161-169, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32417211

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is the most common type of sleep breathing disorder and is characterized by chronic intermittent hypoxia, which could cause inflammation and nuclear factor kappa B (NF-KB)-dependent inflammatory pathways activation. Circulating APRIL (a proliferation-inducing ligand) play an important role in promoting inflammation and NF-KB-dependent inflammatory pathways activation. We explored the role of APRIL as a potential mechanism of inflammation in OSA patients. METHODS: After detailed sleep evaluated, venous blood and demographic data were collected from 155 subjects with varying severity of OSA and 52 control subjects. Plasma levels of APRIL were measured by human Magnetic Luminex assay. RESULTS: Plasma APRIL levels were significantly higher in OSA subjects compared with control subjects. Categorization of the OSA subjects into mild, moderate, and severe OSA subgroups found that plasma levels of APRIL increased with the severity of OSA. After adjusting confounding factors, found that increased plasma APRIL levels were conferred a higher odds ratio of OSA. Moreover, plasma APRIL levels were positively associated with the apnea-hypopnea index, which represents the severity of OSA. Furthermore, plasma APRIL showed higher discriminatory accuracy in predicting the presence of OSA. CONCLUSIONS: Plasma APRIL levels were significantly associated with the occurrence of OSA and its severity. APRIL could be a plasma biomarker with a positive diagnostic value for inflammation and NF-KB-dependent inflammatory pathways activation in subjects with OSA. TRIAL REGISTRATION: The project was approved by the Chinese Clinical Trial Registry (No. ChiCTRROC-17011027).


Assuntos
Apneia Obstrutiva do Sono , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Adulto , Biomarcadores , China , Humanos
19.
Nat Commun ; 10(1): 4996, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676803

RESUMO

Plants deploy various immune receptors to recognize pathogens and defend themselves. Crosstalk may happen among receptor-mediated signal transduction pathways in the same host during simultaneous infection of different pathogens. However, the related function of the receptor-like kinases (RLKs) in thwarting different pathogens remains elusive. Here, we report that NIK1, which positively regulates plant antiviral immunity, acts as an important negative regulator of antibacterial immunity. nik1 plants exhibit dwarfed morphology, enhanced disease resistance to bacteria and increased PAMP-triggered immunity (PTI) responses, which are restored by NIK1 reintroduction. Additionally, NIK1 negatively regulates the formation of the FLS2/BAK1 complex. The interaction between NIK1 and FLS2/BAK1 is enhanced upon flg22 perception, revealing a novel PTI regulatory mechanism by an RLK. Furthermore, flg22 perception induces NIK1 and RPL10A phosphorylation in vivo, activating antiviral signalling. The NIK1-mediated inverse modulation of antiviral and antibacterial immunity may allow bacteria and viruses to activate host immune responses against each other.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Imunidade Vegetal/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/microbiologia , Arabidopsis/virologia , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Imunidade Vegetal/imunologia , Vírus de Plantas/imunologia , Vírus de Plantas/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/imunologia , Pseudomonas syringae/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
20.
Biochem Biophys Res Commun ; 434(4): 885-91, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23618859

RESUMO

CCN1, a secreted matrix-associated molecule, is involved in multiple cellular processes. Accumulating evidence supports that CCN1 plays an important role in tumorigenesis and progression of breast cancer. In this study, we have developed a novel CCN1 function-blocking monoclonal antibody (mAb), designated YM1B. YM1B binds to human CCN1 with high specificity, recognizing the native CCN1 structure with undisturbed disulfide linkages. Our analyses have mapped the YM1B recognition region to domain IV of CCN1, likely in proximity to the DM site. In breast cancer cells, CCN1 can induce actin reorganization, formation of lamellipodia, and cell migration/invasion through the αV integrins/Rac1/ERK signaling axis; these CCN1-dependent activities can be effectively suppressed by YM1B. Our results also suggest that YM1B may exert its CCN1-blocking effect by perturbing the interaction of CCN1 with vitronectin and fibronectin, which are ligands of αV integrins and instrumental for integrin activation. This CCN1-specific mAb may open a new potential avenue for therapeutic intervention of breast cancer progression.


Assuntos
Anticorpos Monoclonais/farmacologia , Movimento Celular/efeitos dos fármacos , Proteína Rica em Cisteína 61/antagonistas & inibidores , Citoesqueleto/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos/imunologia , Sítios de Ligação de Anticorpos , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteína Rica em Cisteína 61/imunologia , Proteína Rica em Cisteína 61/metabolismo , Citoesqueleto/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Integrina alfaV/metabolismo , Células MCF-7 , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vitronectina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...