Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell Signal ; 120: 111222, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729327

RESUMO

BACKGROUND: Bone development involves the rapid proliferation and differentiation of osteogenic lineage cells, which makes accurate chromosomal segregation crucial for ensuring cell proliferation and maintaining chromosomal stability. However, the mechanism underlying the maintenance of chromosome stability during the rapid proliferation and differentiation of Prx1-expressing limb bud mesenchymal cells into osteoblastic precursor cells remains unexplored. METHODS: A transgenic mouse model of RanGAP1 knockout of limb and head mesenchymal progenitor cells was constructed to explore the impact of RanGAP1 deletion on bone development by histomorphology and immunostaining. Subsequently, G-banding karyotyping analysis and immunofluorescence staining were used to examine the effects of RanGAP1 deficiency on chromosome instability. Finally, the effects of RanGAP1 deficiency on chromothripsis and bone development signaling pathways were elucidated by whole-genome sequencing, RNA-sequencing, and qPCR. RESULTS: The ablation of RanGAP1 in limb and head mesenchymal progenitor cells expressing Prx1 in mice resulted in embryonic lethality, severe cartilage and bone dysplasia, and complete loss of cranial vault formation. Moreover, RanGAP1 loss inhibited chondrogenic or osteogenic differentiation of mesenchymal stem cells (MSCs). Most importantly, we found that RanGAP1 loss in limb bud mesenchymal cells triggered missegregation of chromosomes, resulting in chromothripsis of chromosomes 1q and 14q, further inhibiting the expression of key genes involved in multiple bone development signaling pathways such as WNT, Hedgehog, TGF-ß/BMP, and PI3K/AKT in the chromothripsis regions, ultimately disrupting skeletal development. CONCLUSIONS: Our results establish RanGAP1 as a critical regulator of bone development, as it supports this process by preserving chromosome stability in Prx1-expressing limb bud mesenchymal cells.

2.
Plant Commun ; : 100937, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693694

RESUMO

The crosstalk between clathrin-mediated endocytosis (CME) and autophagy pathway has been reported in mammals. However, the interconnection of CME with autophagy has not been established in plants. In this report, we showed that Arabidopsis CLATHRIN LIGHT CHAIN (CLC) subunit 2 and 3 double mutant, clc2-1 clc3-1, phenocopied the Arabidopsis AUTOPHAGY-RELATED GENE (ATG) mutants both in auto-immunity and nutrient sensitivity. Accordingly, the autophagy pathway was significantly compromised in the clc2-1 clc3-1 mutant. Interestingly, we demonstrated with multiple assays that CLC2 directly interacted with ATG8h/ATG8i in a domain-specific manner. As expected, both GFP-ATG8h/GFP-ATG8i and CLC2-GFP were subjected to autophagic degradation and the degradation of GFP-ATG8h was significantly reduced in the clc2-1 clc3-1 mutant. Notably, simultaneously knocking out ATG8h and ATG8i by the CRISPR/CAS9 resulted in an enhanced resistance against Golovinomyces cichoracearum, supporting the functional relevance of the CLC2-ATG8h/8i interactions. In conclusion, our results uncovered a link between the function of CLCs and the autophagy pathway in Arabidopsis.

3.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1050-1064, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658148

RESUMO

Heterotrimeric GTP-binding protein (G-proteins) complex, which consists of Gα, Gß and Gγ subunits, plays critical roles in defense signaling. Arabidopsis genome contains only a single Gß-encoding gene, AGB1. Loss function of AGB1 in Arabidopsis results in enhanced susceptibility to a wide range of pathogens. However, the function of soybean AGB1 in immunity has not been previously interrogated. Bioinformatic analysis indicated that there are four GmAGB1 homologous genes in soybean genome, sharing homology of 86%-97%. To overcome the functional redundancy of these GmAGB1 homologs, virus-induced gene silencing (VIGS) mediated by the bean pod mottle virus (BPMV) was used to silence these four genes simultaneously. As expected, these four GmAGB1 homologous genes were indeed silenced by a single BPMV-VIGS vector carrying a conserved fragments among these four genes. A dwarfed phenotype was observed in GmAGB1s-silenced soybean plants, suggesting that GmAGB1s play a crucial role in growth and development. Disease resistance analysis indicated that silencing GmAGB1s significantly compromised the resistance of soybean plants against Xanthomonas campestris pv. glycinea (Xag). This reduced resistance was correlated with the decreased accumulation of pathogen-induced reactive oxygen species (ROS) and the reduced activation of GmMPK3 in response to flg22, a conserved N-terminal peptide of flagellin protein. These results indicate that GmAGB1 functions as a positive regulator in disease resistance and GmAGB1 is indispensable for the ROS production and GmMPK3 activation induced by pathogen infection. Yeast two hybrid assay showed that GmAGB1 interacted with GmAGG1, suggesting that an evolutionary conserved heterotrimeric G protein complex similarly functions in soybean.


Assuntos
Resistência à Doença , Inativação Gênica , Glycine max , Doenças das Plantas , Glycine max/genética , Glycine max/imunologia , Glycine max/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Comovirus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Regulação da Expressão Gênica de Plantas , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/imunologia , Xanthomonas , Espécies Reativas de Oxigênio/metabolismo
4.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1065-1075, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658149

RESUMO

Autophagy plays an essential role in recycling/re-utilizing nutrients and in adaptions to numerous stresses. However, the roles of autophagy in soybean have not been investigated extensively. In this study, a virus-induced gene silencing approach mediated by bean pod mottle virus (BPMV) was used to silence autophagy-related gene 5 (ATG5) genes in soybean (referred to as GmATG5). Our results showed that ATG8 proteins were massively accumulated in the dark-treated leaves of the GmATG5-silenced plants relative to the vector control plants (BPMV-0), indicating that autophagy pathway is impaired in the GmATG5-silenced plants. Consistent with the impaired autophagy, an accelerated senescence phenotype was observed on the leaves of the dark-treated GmATG5-silenced plants, which was not shown on the leaves of the dark-treated BPMV-0 plants. In addition, the accumulation levels of both reactive oxygen species (ROS) and salicylic acid (SA) were significantly induced in the GmATG5-silenced plants compared with that of the vector control plants (BPMV-0), indicating an activated immunity. Accordingly, the GmATG5-silenced plants exhibited significantly enhanced resistance against Pseudomonas syringae pv. glycinea (Psg) in comparison with the BPMV-0 plants. Nevertheless, the activated immunity observed in the GmATG5-silenced plant was independent of the activation of mitogen-activated protein kinase (MAPK).


Assuntos
Autofagia , Comovirus , Resistência à Doença , Inativação Gênica , Glycine max , Doenças das Plantas , Glycine max/genética , Glycine max/microbiologia , Glycine max/imunologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Autofagia/genética , Comovirus/genética , Senescência Vegetal/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Plantas Geneticamente Modificadas/genética
5.
Plant Sci ; 343: 112057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460553

RESUMO

The eukaryotic AGC protein kinase subfamily (protein kinase A/ protein kinase G/ protein kinase C-family) is involved in regulating numerous biological processes across kingdoms, including growth and development, and apoptosis. PDK1(3-phosphoinositide-dependent protein kinase 1) is a conserved serine/threonine kinase in eukaryotes, which is both a member of AGC kinase and a major regulator of many other downstream AGC protein kinase family members. Although extensively investigated in model plant Arabidopsis, detailed reports for tobacco PDK1s have been limited. To better understand the functions of PDK1s in tobacco, CRISPR/CAS9 transgenic lines were generated in tetraploid N. tabacum, cv. Samsun (NN) with 5-7 of the 8 copies of 4 homologous PDK1 genes in tobacco genome (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out. Numerous developmental defects were observed in these NtPDK1a/1b/1c/1d CRISPR/CAS9 lines, including cotyledon fusion leaf shrinkage, uneven distribution of leaf veins, convex veins, root growth retardation, and reduced fertility, all of which reminiscence of impaired polar auxin transport. The severity of these defects was correlated with the number of knocked out alleles of NtPDK1a/1b/1c/1d. Consistent with the observation in Arabidopsis, it was found that the polar auxin transport, and not auxin biosynthesis, was significantly compromised in these knockout lines compared with the wild type tobacco plants. The fact that no homozygous plant with all 8 NtPDK1a/1b/1c/1d alleles being knocked out suggested that knocking out 8 alleles of NtPDK1a/1b/1c/1d could be lethal. In conclusion, our results indicated that NtPDK1s are versatile AGC kinases that participate in regulation of tobacco growth and development via modulating polar auxin transport. Our results also indicated that CRISPR/CAS9 technology is a powerful tool in resolving gene redundancy in polyploidy plants.


Assuntos
Arabidopsis , Nicotiana , Nicotiana/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sistemas CRISPR-Cas , Proteínas Quinases/genética , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
iScience ; 27(2): 108721, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303704

RESUMO

n-3 polyunsaturated fatty acids (PUFAs) are closely related to the progression of numerous chronic inflammatory diseases, but the role of n-3 PUFAs in the intervertebral disc degeneration (IVDD) remains unclear. In this study, male C57BL/6 wildtype mice (WT group, n = 30) and fat-1 transgenic mice (TG group, n = 30) were randomly selected to construct the IVDD model. The results demonstrated that the optimized composition of PUFAs in the TG mice had a significant impact on delaying IVDD and cellular senescence of intervertebral disc (IVD). Mechanismly, n-3 PUFAs inhibited IVD senescence by alleviating NCOA4-mediated iron overload. NCOA4 overexpression promoted iron overload and weakened the pro-proliferation and anti-senescence effect of DHA on the IVD cells. Furthermore, this study futher revealed n-3 PUFAs downregulated NCOA4 expression by inactiviting the LGR5/ß-catenin signaling pathway. This study provides an important theoretical basis for preventing and treating IVDD and low back pain.

7.
Microbiol Spectr ; 12(1): e0222723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38059627

RESUMO

IMPORTANCE: Staphylococcus aureus is a Gram-positive opportunistic bacterium that is responsible for the majority of skin infections in humans. Our study provides important molecular insights into the pathogenesis of S. aureus skin infections and identifies a potential therapeutic target for the treatment of these infections. Our findings also indicate that ß-hemolysin (Hlb) secreted by colonized S. aureus is a risk factor for epidermal growth factor receptor (EGFR)-related diseases by acting as an agonist of EGFR. The neutralized monoclonal antibody we have developed for the first time will provide a functional inhibitor of Hlb. This study provides important insights to better understand the relationship between the skin colonization of S. aureus and inflammatory skin diseases.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Proteínas Hemolisinas/metabolismo , Pele/microbiologia , Receptores ErbB/metabolismo , Infecções Estafilocócicas/microbiologia , Inflamação/patologia
8.
Proc Natl Acad Sci U S A ; 121(1): e2310685120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147550

RESUMO

Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.


Assuntos
Leptina , Ossificação Heterotópica , Animais , Camundongos , Leptina/genética , Ligantes , Camundongos Endogâmicos C57BL , Osteogênese , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
9.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003698

RESUMO

Autophagy plays a critical role in nutrient recycling/re-utilizing under nutrient deprivation conditions. However, the role of autophagy in soybeans has not been intensively investigated. In this study, the Autophay-related gene 7 (ATG7) gene in soybeans (referred to as GmATG7) was silenced using a virus-induced gene silencing approach mediated by Bean pod mottle virus (BPMV). Our results showed that ATG8 proteins were highly accumulated in the dark-treated leaves of the GmATG7-silenced plants relative to the vector control leaves (BPMV-0), which is indicative of an impaired autophagy pathway. Consistent with the impaired autophagy, the dark-treated GmATG7-silenced leaves displayed an accelerated senescence phenotype, which was not seen on the dark-treated BPMV-0 leaves. In addition, the accumulation levels of both H2O2 and salicylic acid (SA) were significantly induced in the GmATG7-silenced plants compared with the BPMV-0 plants, indicating an activated immunity. Consistently, the GmATG7-silenced plants were more resistant against both Pseudomonas syringae pv. glycinea (Psg) and Soybean mosaic virus (SMV) compared with the BPMV-0 plants. However, the activated immunity in the GmATG7-silenced plant was not dependent upon the activation of MPK3/MPK6. Collectively, our results demonstrated that the function of GmATG7 is indispensable for autophagy in soybeans, and the activated immunity in the GmATG7-silenced plant is a result of impaired autophagy.


Assuntos
Proteína 7 Relacionada à Autofagia , Glycine max , Proteínas de Plantas , Resistência à Doença , Inativação Gênica , Peróxido de Hidrogênio , Doenças das Plantas , Glycine max/imunologia , Glycine max/metabolismo , Glycine max/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo
11.
Orthop Surg ; 15(9): 2410-2422, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37475697

RESUMO

OBJECTIVE: Mechanical stress is an important risk factor for intervertebral disc degeneration (IVDD). Angiopoietin-2 (ANG-2) is regulated by mechanical stress and is widely involved in the regulation of extracellular matrix metabolism. In addition, the signaling cascade between HIF-1α and NF-κB is critical in matrix degradation. This study aims to investigate the role and molecular mechanism of ANG-2 in regulating the degeneration of annulus fibrosus (AF) through the HIF-1α/NF-κB signaling pathway. METHODS: The bipedal standing mice IVDD model was constructed, and histological experiments were used to evaluate the degree of IVDD and the expression of ANG-2 in the AF. Mouse primary AF cells were extracted in vitro and subjected to mechanical stretching experiments. Western blot assay was used to detect the effect of mechanical stress on ANG-2, and the role of the ANG-2-mediated HIF-1α/NF-κB pathway in matrix degradation. In addition, the effect of inhibiting ANG-2 expression by siRNA or monoclonal antibody on delaying IVDD was investigated at in vitro and in vivo levels. One-way ANOVA with the least significant difference method was used for pairwise comparison of the groups with homogeneous variance, and Dunnett's method was used to compare the groups with heterogeneous variance. RESULTS: In IVDD, the expressions of catabolic biomarkers (mmp-13, ADAMTS-4) and ANG-2 were significantly increased in AF. In addition, p65 expression was increased while HIF-1α expression was significantly decreased. The results of western blot assay showed mechanical stress significantly up-regulated the expression of ANG-2 in AF cells, and promoted matrix degradation by regulating the activity of HIF-1α/NF-κB pathway. Exogenous addition of Bay117082 and CoCl2 inhibited matrix degradation caused by mechanical stress. Moreover, injection of neutralizing antibody or treatment with siRNA to inhibit the expression of ANG-2 improved the matrix metabolism of AF and inhibited IVDD progression by regulating the HIF-1α/NF-κB signaling pathway. CONCLUSION: In IVDD, mechanical stress could regulate the HIF-1α/NF-κB signaling pathway and matrix degradation by mediating ANG-2 expression in AF degeneration.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Animais , Camundongos , NF-kappa B/metabolismo , Estresse Mecânico , Angiopoietina-2/metabolismo , Transdução de Sinais/fisiologia , Degeneração do Disco Intervertebral/patologia , Matriz Extracelular/metabolismo , RNA Interferente Pequeno
12.
Trop Med Infect Dis ; 8(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36668953

RESUMO

Capillaria hepatica is a seriously neglected zoonotic parasite, which infects the liver of mammalian hosts, causing fibrosis or even hepatic failure. At present, the immune responses elicited by C. hepatica are not fully understood, and the role(s) of the programmed death 1 (PD-1) signaling pathway in the context of C. hepatica-induced pathology are not known. In this study, we identify that the late stage of infection with C. hepatica-especially the egg-derived antigens-modulates the host immune responses to promote alternatively activated macrophage (M2) polarization and programmed death ligand 2 (PD-L2) expression. The PD-L2-expressing alternatively activated M2 macrophages play an important role in maintaining Th2-biased regulatory immune responses, which may facilitate the survival of parasitic worms or eggs within the infected liver and reduce the liver pathology caused by the egg granulomas. Treatment with anti-PD-L2 antibody had no effect on the survival of parasitic eggs but deteriorated the pathology of egg granulomas. The obtained results suggest that PD-1/PD-L2 signaling, which is involved in alternative macrophage polarization, determines the immune response pattern and the immunopathology, consequently determining the outcome of the parasitic infection.

13.
Int J Mol Med ; 51(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36416350

RESUMO

Following the publication of the above article, an interested reader drew to the authors' attention that Figs. 1C and 2 in the paper appeared to contain instances of duplicated data. The authors were able to consult their original data files, and realized that these figures had indeed been assembled incorrectly. Moreover, they identified further errors with a number of the other figures in their published formats (specifically, Figs. 3, 4, 6 and 7), and requested that a corrigendum be published to take account of all the errors that were made during the compilation of these figures. The Editor of International Journal of Molecular Medicine has considered the authors' request to publish a corrigendum, but has declined this request on account of the large number of errors that have been identified, and subsequently determined that this article should be retracted from the Journal on the basis of an overall lack of confidence in the presented data. Upon receiving this decision from the Editor, the authors were in agreement that the article should be retracted. The Editor apologizes to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 39: 527­538, 2017; DOI: 10.3892/ijmm.2017.2880].

14.
Exp Mol Med ; 54(9): 1549-1562, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131026

RESUMO

Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal canal stenosis (LSCS). The pathomechanisms for LFH have not been fully elucidated. Isobaric tags for relative and absolute quantitation (iTRAQ) technology, proteomics assessments of human ligamentum flavum (LF), and successive assays were performed to explore the effect of clusterin (CLU) upregulation on LFH pathogenesis. LFH samples exhibited higher cell positive rates of the CLU, TGF-ß1, α-SMA, ALK5 and p-SMAD3 proteins than non-LFH samples. Mechanical stress and TGF-ß1 initiated CLU expression in LF cells. Notably, CLU inhibited the expression of mechanical stress-stimulated and TGF-ß1-stimulated COL1A2 and α-SMA. Mechanistic studies showed that CLU inhibited mechanical stress-stimulated and TGF-ß1-induced SMAD3 activities through suppression of the phosphorylation of SMAD3 and by inhibiting its nuclear translocation by competitively binding to ALK5. PRKD3 stabilized CLU protein by inhibiting lysosomal distribution and degradation of CLU. CLU attenuated mechanical stress-induced LFH in vivo. In summary, the findings showed that CLU attenuates mechanical stress-induced LFH by modulating the TGF-ß1 pathways in vitro and in vivo. These findings imply that CLU is induced by mechanical stress and TGF-ß1 and inhibits LF fibrotic responses via negative feedback regulation of the TGF-ß1 pathway. These findings indicate that CLU is a potential treatment target for LFH.


Assuntos
Ligamento Amarelo , Clusterina/metabolismo , Humanos , Hipertrofia/metabolismo , Ligamento Amarelo/metabolismo , Ligamento Amarelo/patologia , Estresse Mecânico , Fator de Crescimento Transformador beta1/metabolismo
15.
Bone ; 163: 116507, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908648

RESUMO

Heterotopic ossification (HO) is a pathological bone formation based on endochondral ossification distinguished by ossification within muscles, tendons, or other soft tissues. There has been growing studies focusing on the treatment with rapamycin to inhibit HO, but the mechanism of mTORC1 on HO remains unclear. Tendon cells (TDs) are the first cells to form during tendon heterotopic ossification. Here, we used an in vivo model of HO and an in vitro model of chondrogenesis induction to elucidate the effect and underlying mechanism of mTORC1 in HO. The current study highlights the effect of rapamycin on murine Achilles tenotomy-induced HO and the role of mTORC1 signaling pathway on TDs. Our result showed that mTORC1 was activation in the early stage of HO, whereas the mTORC1 maintained low expression in the mature ectopic cartilage tissue and the ectopic bone formation sites. The use of mTORC1-specific inhibitor (rapamycin) immediately after Achilles tendon injury could suppress the formation of HO; once ectopic cartilage and bone had formed, treatment with rapamycin could not significantly inhibit the progression of HO. Mechanistically, mTORC1 stimulation by silencing of TSC1 promoted the expression of the chondrogenic markers in TDs. In TDs, treated with mTORC1 stimulation by silencing of TSC1, mTORC1 increased the activation of the NF-κB signaling pathway. NF-κB selective inhibitor BAY11-7082 significantly suppressed the chondrogenesis of TDs that treated with mTORC1 stimulation by silencing of TSC1. Together, our findings demonstrated that mTORC1 promoted HO by regulating TDs chondrogenesis partly through the NF-κB signaling pathway; and rapamycin could be a viable HO therapeutic regimen.


Assuntos
Tendão do Calcâneo , Ossificação Heterotópica , Animais , Condrogênese , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , NF-kappa B , Osteogênese , Transdução de Sinais
16.
Acta Parasitol ; 67(1): 569-572, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34851512

RESUMO

BACKGROUND: Cysticercosis is the commonest parasitic disease to affect the central nervous system (CNS). However, cysticercosis affecting the spine is extremely rare. We reported a rare case of cysticercosis involving the whole spinal canal in China. CASE PRESENTATION: A rare case of cysticercosis involving the entire spinal cord, in a 52-year-old Chinese man, was detected in 2021. Epidemiological investigation, clinical and etiological examination was performed. CONCLUSION: Since spinal cysticercosis is a rare but potentially life-threatening disease, clinicians should always consider the differential diagnosis of space-occupying lesions.


Assuntos
Cisticercose , Neurocisticercose , Doenças da Medula Espinal , Cisticercose/diagnóstico , Diagnóstico Diferencial , Humanos , Masculino , Pessoa de Meia-Idade , Neurocisticercose/diagnóstico , Neurocisticercose/patologia , Canal Medular/diagnóstico por imagem , Canal Medular/patologia , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/parasitologia
17.
Stem Cells Int ; 2021: 5553676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912459

RESUMO

Mechanical stress promotes human ligamentum flavum cells (LFCs) to synthesize multitype collagens, leading to ligamentum flavum hypertrophy (LFH). However, the mechanism of mechanical stress in the formation of collagen remains unclear. Therefore, we investigated the relationship between mechanical stress and collagen synthesis in the present study. First, LFCs were isolated from 9 patients and cultured with or without mechanical stress exposure for different times. IGF-1, collagen I (col-I), and collagen III (col-III) protein and mRNA levels were then detected via ELISA and qPCR, respectively. Moreover, the activation of pIGF-1R, pAKT, and pS6 was examined by Western blot analysis. To further explore the underlying mechanism, an IGF-1 neutralizing antibody, NVP-AEW541, and rapamycin were used. IGF-1, col-I, and col-III were significantly increased in stressed LFCs compared to nonstressed LFCs. In addition, the activation of pIGF-1R, pAKT, and pS6 was obviously enhanced in stressed LFCs. Interestingly, col-I protein, col-I mRNA, col-III protein, col-III mRNA, and IGF-1 protein, but not IGF-1 mRNA, were inhibited by IGF-1 neutralizing antibody. In addition, col-I and col-III protein and mRNA, but not IGF-1, were inhibited by both NVP-AEW541 and rapamycin. Moreover, the activation of pIGF-1R, pAKT, and pS6 was reduced by the IGF-1 neutralizing antibody and NVP-AEW541, and the activation of pS6 was reduced by rapamycin. In summary, these results suggested that mechanical stress promotes LFCs to produce IGF-1, which facilitates col-I and col-III synthesis via the IGF-1R/AKT/mTORC1 signaling pathway.

18.
PLoS Negl Trop Dis ; 15(11): e0009944, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735436

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) could progress to secondary hemophagocytic lymphohistiocytosis (HLH), which is a rare but life-threatening condition with poor prognosis. So far, the clinical and laboratory characteristics of VL associated HLH have not been well elucidated. METHOD AND FINDINGS: In this study, we retrospectively analyzed the clinical and laboratory profiles between 17 patients with VL associated HLH and 27 patients with VL alone admitted at the Beijing Friendship Hospital, Capital Medical University from May 2016 to March 2021. In addition to the identification of Leishmania infection, hemophagocytosis was identified in bone marrow in the most cases of VL associated HLH (15/17). The patients with VL associated HLH had higher chances of bleeding, hepatomegaly, thrombocytopenia, hypertriglyceridemia, hyperferritinemia, hypofibrinogenemia, elevated secretion of soluble IL-2 receptor or lower NK cell activity compared to patients with VL only. Furthermore, patients with VL associated HLH had higher inflammation status associated with higher levels of Th1 (TNF-α, IFN-γ, IL-1beta, IL-6, IL-8, IL-12p70), Th2 (IL-4) and Th17 cytokines (IL-17, IL-23) in the peripheral blood, and higher parasite load (qPCR and parasite culture). All 27 VL cases were totally recovered after being treated with Sodium Stibogluconate, five of the 17 patients with VL associated HLH died even after timely treatment with anti-parasite and immunosuppressive chemotherapy. CONCLUSION: Without appropriate treatment, visceral leishmaniosis could develop to secondary HLH. The parasite culturing and qPCR detection of bone marrow samples facilitates the diagnosis of VL associated HLH in addition to other findings of HLH. Prompt treatment with anti-Leishmania and immunosuppressive chemotherapy is critical to reduce the mortality of VL associated HLH.


Assuntos
Leishmania infantum/fisiologia , Leishmaniose Visceral/complicações , Linfo-Histiocitose Hemofagocítica/parasitologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Interleucina-12/genética , Interleucina-12/imunologia , Células Matadoras Naturais/imunologia , Leishmaniose Visceral/parasitologia , Linfo-Histiocitose Hemofagocítica/etiologia , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Células Th1/imunologia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem
19.
J Environ Manage ; 299: 113621, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461463

RESUMO

Agricultural subsidies lead to changes in the use of chemical fertilizer by farmers. Using data from a household survey conducted annually by the Rural Economy Research Center of the Ministry of Agriculture of China from 2014 to 2018, Control Function (CF) approach and Heteroskedasticity-based identification strategy were employed to analyze the impact of agricultural subsidies on chemical fertilizer use by rice farmers. After addressing the problem of endogeneity, we found that agricultural subsidies have a significantly negative impact on the use of chemical fertilizer. Precisely, every 100% increase in agricultural subsidies would result in an average decrease of 3.4% in chemical fertilizer use. In addition, results of heterogeneity analysis showed that agricultural subsidies had a stronger negative impact on fertilizer use as rice-planting experience increases. But the ability of rice-planting management and off-farm labor within household could reduce this negative impact. We also found that the effect of arable land productivity conservation subsidies policy was short-lived. Furthermore, based on the frame of structural equation model (SEM), the results of mediation analysis showed that agricultural machine and rice-planting area had partial mediation of 5.3% and 41%, respectively. It implied that agricultural subsidies reduced fertilizer use by promoting the adoption of agricultural techniques and expanding the planting area. In brief, agricultural subsidies had both technical effect and scale effect. But the mediating effect of household income was not significant. This study is intended to assist the concerned authority and agriculture sector to understand the positive role of agricultural subsidies in sustainable production, and provides some feasible policy proposals.


Assuntos
Agricultura , Fertilizantes , China , Fazendeiros , Fazendas , Humanos
20.
Environ Sci Pollut Res Int ; 28(44): 62755-62770, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34215977

RESUMO

Recently, severe haze pollution has not only threatened human health and food security, but also seems to have aggravated the unscientific use of pesticides by rice farmers in rural areas of China. Using original data on haze pollution across China, combined with rural household survey data collected from 2014 to 2018, we conducted a detailed empirical study on the effects of haze pollution on pesticide use by rice farmers based on the theory of risk aversion. The empirical results revealed that haze pollution with higher levels of PM2.5 positively impacted the use of chemical pesticides in rice cultivation. More precisely, with each 100% increase in PM2.5 concentrations, the use of pesticide per mu increased by 7.9%, and the average pesticide cost per mu increased by 2.3%. The results were robust to a series of tests that addressed potential endogeneity concerns, including omitted variable bias, measurement error, and reverse causality. We then examined the heterogeneous effects of haze pollution increases on the use of chemical pesticides and found that for rice farmers without rice insurance, haze pollution has a stronger effect on pesticide use and a weaker effect on pesticide cost. However, for rice farmers with more experience in rice cultivation and small-scale rice planting, the effect of haze pollution on pesticide use and cost is relatively small. Our findings provide important policy implications for pesticide risk management in rural areas of developing countries.


Assuntos
Oryza , Praguicidas , Agricultura , China , Poluição Ambiental , Fazendeiros , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...