Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 202: 107929, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542826

RESUMO

Dozens of triterpenes have been isolated from Camptotheca acuminata, however, triterpene metabolism in this plant remains poorly understood. The common C28 carboxy located in the oleanane-type and ursane-type triterpenes indicates the existence of a functionally active triterpene, C28 oxidase, in this plant. Thorough mining and screening of the CYP716 genes were initiated using the multi-omics database for C. acuminata. Two CYP716A (CYP716A394 and CYP716A395) and three CYP716C (CYP716C80-CYP716C82) were identified based on conserved domain analyses and hierarchical cluster analyses. CYP716 microsomal proteins were prepared and their enzymatic activities were evaluated in vitro. The CYP716 classified into the CYP716C subfamily displays ß-amyrin oxidation activity, and CYP716A displays α-amyrin and lupeol oxidation activity, based on gas chromatography-mass spectrometry analyses. The oxidation products were determined based on their mass and nuclear magnetic resonance spectrums. The optimum reaction conditions and kinetic parameters for CYP716C were determined, and functions were verified in Nicotiana benthaminana. Relative quantitative analyses revealed that these CYP716C genes were enriched in the leaves of C. acuminata plantlets after 60 d. These results indicate that CYP716C plays a dominant role in oleanane-type triterpene metabolism in the leaves of C. acuminata via a substrate-specific manner, and CYP716A is responsible for ursane- and lupane-type triterpene metabolism in fruit. This study provides valuable insights into the unique CYP716C-mediated oxidation step of pentacyclic triterpene biosynthesis in C. acuminata.


Assuntos
Camptotheca , Triterpenos , Camptotheca/metabolismo , Oxirredutases , Triterpenos Pentacíclicos , Triterpenos/metabolismo
2.
ACS Chem Biol ; 18(8): 1772-1785, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37523250

RESUMO

The detailed metabolic map for camptothecin (CPT) biosynthesis in Camptotheca acuminata has been proposed according to our combined omics results. However, the CYP450-mediated epoxidation step in CPT biosynthesis remains unexplored. A proteomics-guided approach was used to identify and annotate the proteins enriched during the vigorous CPT metabolism period in mature C. acuminata and seedlings. Comparative analyses revealed that the CPT and flavonoid biosyntheses were vigorous in stems and all of the samples except the leaves, respectively. The CYP71BE genes were screened based on their enrichment patterns at the transcriptomic-proteomic level and biochemically characterized in Saccharomyces cerevisiae WAT11. Four CYP71BE proteins exhibited in vitro isoliquiritigenin epoxidase activity. Additionally, CYP71BE206 showed epoxidase activity toward strictosamide, the critical precursor for CPT biosynthesis, both in vitro and in Nicotiana benthamiana. In planta functional verification suggested that CYP71BE206 is involved in CPT biosynthesis. Their catalytic conditions were optimized, and the enzymatic parameters were determined. This study provides valuable insight into the CYP71BE-mediated epoxidation step for CPT biosynthesis and offers evidence to verify that the newly characterized epoxidase (CYP71BE206) is simultaneously responsible for the biosynthesis of CPT and the flavonoid in this plant. An evolution event probably happened on ancestral CYP71BE, resulting in the neofunctionalization of CYP71BE206.


Assuntos
Camptotheca , Camptotecina , Proteômica , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
3.
ACS Appl Mater Interfaces ; 15(34): 41055-41066, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37523469

RESUMO

The fabrication of flexible pressure sensors with low cost, high scalability, and easy fabrication is an essential driving force in developing flexible electronics, especially for high-performance sensors that require precise surface microstructures. However, optimizing complex fabrication processes and expensive microfabrication methods remains a significant challenge. In this study, we introduce a laser pyrolysis direct writing technology that enables rapid and efficient fabrication of high-performance flexible pressure sensors with a micro-truncated pyramid array. The pressure sensor demonstrates exceptional sensitivities, with the values of 3132.0, 322.5, and 27.8 kPa-1 in the pressure ranges of 0-0.5, 0.5-3.5, and 3.5-10 kPa, respectively. Furthermore, the sensor exhibits rapid response times (loading: 22 ms, unloading: 18 ms) and exceptional reliability, enduring over 3000 pressure loading and unloading cycles. Moreover, the pressure sensor can be easily integrated into a sensor array for spatial pressure distribution detection. The laser pyrolysis direct writing technology introduced in this study presents a highly efficient and promising approach to designing and fabricating high-performance flexible pressure sensors utilizing micro-structured polymer substrates.

4.
Nano Lett ; 23(4): 1211-1218, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36748951

RESUMO

Interfacial atomic configuration and its evolution play critical roles in the structural stability and functionality of mixed zero-dimensional (0D) metal nanoparticles (NPs) and two-dimensional (2D) semiconductors. In situ observation of the interface evolution at atomic resolution is a vital method. Herein, the directional migration and structural evolution of Au NPs on anisotropic ReS2 were investigated in situ by aberration-corrected transmission electron microscopy. Statistically, the migration of Au NPs with diameters below 3 nm on ReS2 takes priority with greater probability along the b-axis direction. Density functional theory calculations suggest that the lower diffusion energy barrier enables the directional migration. The coalescence kinetics of Au NPs is quantitatively described by the relation of neck radius (r) and time (t), expressed as r2=Kt. Our work provides an atomic-resolved dynamic analysis method to study the interfacial structural evolution of metal/2D materials, which is essential to the study of the stability of nanodevices based on mixed-dimensional nanomaterials.

5.
Phys Chem Chem Phys ; 25(4): 3270-3278, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36625732

RESUMO

Short-wave ultraviolet (also called UVC) irradiation is a well-adopted method of viral inactivation due to its ability to damage genetic material. A fundamental problem with the UVC inactivation method is that its mechanism of action on viruses is still unknown at the molecular level. To address this problem, herein we investigate the response mechanism of genome materials to UVC light by means of quantum chemical calculations. The spectral properties of four nucleotides, namely, adenine, cytosine, guanine, and uracil, are mainly focused on. Meanwhile, the transition state and reaction rate constant of uracil molecules are also considered to demonstrate the difficulty level of adjacent nucleotide reaction without and with UVC irradiation. The results show that the peak wavelengths are 248.7 nm, 226.1 nm (252.7 nm), 248.3 nm, and 205.8 nm (249.2 nm) for adenine, cytosine, guanine, and uracil nucleotides, respectively. Besides, the reaction rate constants of uracil molecules are 6.419 × 10-49 s-1 M-1 and 5.436 × 1011 s-1 M-1 for the ground state and excited state, respectively. Their corresponding half-life values are 1.56 × 1048 s and 1.84 × 10-12 s. This directly suggests that the molecular reaction between nucleotides is a photochemical process and the reaction without UVC irradiation almost cannot occur.


Assuntos
Nucleotídeos , Uracila , Adenina , Citosina , Guanina , Raios Ultravioleta
6.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432307

RESUMO

Recent reports focus on the hydrogenation engineering of monolayer boron phosphide and simultaneously explore its promising applications in nanoelectronics. Coupling density functional theory and finite element method, we investigate the bowtie triangle ring microstructure composed of boron phosphide with hydrogenation based on structural and performance analysis. We determine the carrier mobility of hydrogenated boron phosphide, reveal the effect of structural and material parameters on resonance frequencies, and discuss the variation of the electric field at the two tips. The results suggest that the mobilities of electrons for hydrogenated BP monolayer in the armchair and zigzag directions are 0.51 and 94.4 cm2·V-1·s-1, whereas for holes, the values are 136.8 and 175.15 cm2·V-1·s-1. Meanwhile, the transmission spectra of the bowtie triangle ring microstructure can be controlled by adjusting the length of the bowtie triangle ring microstructure and carrier density of hydrogenated BP. With the increasing length, the transmission spectrum has a red-shift and the electric field at the tips of equilateral triangle rings is significantly weakened. Furthermore, the theoretical sensitivity of the BTR structure reaches 100 GHz/RIU, which is sufficient to determine healthy and COVID-19-infected individuals. Our findings may open up new avenues for promising applications in the rapid diagnosis of COVID-19.

7.
Synth Syst Biotechnol ; 7(2): 824-836, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35510090

RESUMO

Flavonoid metabolism in Camptotheca acuminate remained an untapped area for years. A tandem MS approach was used and focused on the mining and characterizing of flavonoids in mature C. acuminate. Fifteen new flavonoids and forty-three known flavonoids, including fifteen flavone analogs, sixteen flavonol analogs, seven flavanone analogs, six chalcone analogs, four xanthone analogs, ten flavane analogs were mined and identified based on their MS/MS fragments. Fifty-three of them were firstly characterized in C. acuminate. Eight biosynthetic precursors for these flavonoids were also identified. We constructed a specific metabolic map for flavonoids according to their relative contents in the flowers, fruits, stems, and leaves of C. acuminate. Furthermore, the most probable genes involved in chalcone biosynthesis, flavonoid hydroxylation, methylation, and glycosylation were further mined and fished in the gene reservoir of C. acuminate according to their conserved domains and co-expression analysis. These findings enable us to acquire a better understanding of versatile flavonoid metabolism in C. acuminate.

8.
Front Plant Sci ; 13: 851077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401649

RESUMO

Treatments with abiotic elicitors can efficiently induce the accumulation of specialized metabolites in plants. We used a combined omics approach to analyze the elicitation effects of MeJa, AgNO3, and PEG on camptothecin (CPT) biosynthesis in Camptotheca acuminata plantlets. Untargeted analyses revealed that treatments with MeJa, AgNO3, and PEG significantly inhibited the photosynthetic pathway and promoted carbon metabolism and secondary metabolic pathways. The CPT levels increased by 78.6, 73.3, and 50.0% in the MeJa, AgNO3, and PEG treatment groups, respectively. Using C. acuminata plantlets after elicitation treatment, we mined and characterized 15 new alkaloids, 25 known CPT analogs and precursors, 9 iridoid biosynthetic precursors, and 15 tryptamine biosynthetic precursors based on their MS/MS fragmentation spectra. Using 32 characterized genes involved in CPT biosynthesis as bait, we mined 12 prioritized CYP450 genes from the 416 CYP450 candidates that had been identified based on co-expression analysis, conserved domain analysis, and their elicitation-associated upregulation patterns. This study provides a comprehensive perspective on CPT biosynthesis in C. acuminata plantlets after abiotic elicitation. The findings enable us to elucidate the previously unexplored CYP450-mediated oxidation steps for CPT biosynthesis.

9.
Chem Commun (Camb) ; 57(87): 11525-11528, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34661229

RESUMO

A new noncentrosymmetric iron-iodate-fluoride Ba2[FeF4(IO3)2]IO3 was ingeniously obtained based on the centrosymmetric Ba[FeF4(IO3)] through chemical tailoring. Ba2[FeF4(IO3)2]IO3 exhibits a strong phase-matchable second-harmonic generation effect, a large band gap, and a wide mid-infrared transparent window. The chemical tailoring design based on oxide-fluoride anions affords a feasible approach to design nonlinear optical materials.

10.
Chem Sci ; 12(27): 9333-9338, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349903

RESUMO

A novel salt-inclusion fluoroiodate [GaF(H2O)][IO3F] derived from CsIO2F2 was ingeniously obtained through anisotropic polycation substitution. Because the catenulate [GaF(H2O)]2+ framework serves as a template for the favorable assembly of the polar [IO3F]2- groups and contributes to the nonlinear coefficient, [GaF(H2O)][IO3F] exhibits a greatly improved second-harmonic generation (SHG) effect of 10 times that of KH2PO4 (KDP) and a considerable band gap of 4.34 eV compared to the parent compound CsIO2F2 (3 × KDP, 4.5 eV). Particularly, to the best of our knowledge, [GaF(H2O)][IO3F] has the largest laser-induced damage threshold (LDT) of 140 × AgGgS2 of the reported iodates. All these results signify that [GaF(H2O)][IO3F] is a promising nonlinear optical (NLO) crystal. This work also proposes that anisotropic polycation substitution is an effective approach to optimize the SHG effect and develop excellent NLO materials.

11.
Inorg Chem ; 60(6): 3539-3542, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33650857

RESUMO

Explorations of new types of borates are important because of their promising application in diverse fields. A new bismuth-containing boroselenite, Bi2[B2(SeO3)6], has been obtained through high-temperature solid-state reaction in a closed system. Bi2[B2(SeO3)6] possesses a zero-dimensional [B2(SeO3)6]6- anionic group that does not belong to any types of reported boroselenites. Besides, Bi2[B2(SeO3)6] is the first boroselenite with lone-pair electrons containing a metal ion as the countercation. More interestingly, on the basis of the first-principles calculations, this compound displays a large birefringence (0.090) at 1064 nm.

12.
Genes (Basel) ; 11(5)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380769

RESUMO

Olive (Olea europaea.L) is an economically important oleaginous crop and its fruit cold-pressed oil is used for edible oil all over the world. The basic region-leucine zipper (bZIP) family is one of the largest transcription factors families among eukaryotic organisms; its members play vital roles in environmental signaling, stress response, plant growth, seed maturation, and fruit development. However, a comprehensive report on the bZIP gene family in olive is lacking. In this study, 103 OebZIP genes from the olive genome were identified and divided into 12 subfamilies according to their genetic relationship with 78 bZIPs of A. thaliana. Most OebZIP genes are clustered in the subgroup that has a similar gene structure and conserved motif distribution. According to the characteristics of the leucine zipper region, the dimerization characteristics of 103 OebZIP proteins were predicted. Gene duplication analyses revealed that 22 OebZIP genes were involved in the expansion of the bZIP family. To evaluate the expression patterns of OebZIP genes, RNA-seq data available in public databases were analyzed. The highly expressed OebZIP genes and several lipid synthesis genes (LPGs) in fruits of two varieties with different oil contents during the fast oil accumulation stage were examined via qRT-PCR. By comparing the dynamic changes of oil accumulation, OebZIP1, OebZIP7, OebZIP22, and OebZIP99 were shown to have a close relationship with fruit development and lipid synthesis. Additionally, some OebZIP had a significant positive correlation with various LPG genes. This study gives insights into the structural features, evolutionary patterns, and expression analysis, laying a foundation to further reveal the function of the 103 OebZIP genes in olive.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Olea/genética , Proteínas de Plantas/genética , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/classificação , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Sequência Conservada , Dimerização , Evolução Molecular , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Lipídeos/biossíntese , Olea/metabolismo , Azeite de Oliva/metabolismo , Filogenia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/classificação , RNA-Seq
13.
J Chromatogr A ; 1620: 461036, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32201039

RESUMO

Leaves, flowers, fruits and stems (44 sample groups) were collected from mature Camptotheca acuminate during 2017.3-2018.3 and classified by ultra-high performance liquid chromatography coupled with quadrupole-time of flight-mass spectrometry based metabolomics. One hundred metabolites including forty-seven alkaloids, fifteen terpenes, thirty-two polyphenols and six other metabolites were rapidly identified through the in-house database alignment at first glance. Thirty-three alkaloids classified into five groups including camptothecin group (CG1-13), pumiloside group (PG1-5), strictosidinic acid group (SG1-3), vincosamide group (VG1-7), and a new hybrid group, vincosamide-camptothecin group (VC1-5) were mined and further characterized by MS/MS analyses. The identification of two untapped biosynthetic precursors, 2-hydroxypumiloside (PG2) and 16­hydroxy­15, 16-dihydrocamptothecoside (CG3), along with sixteen new alkaloids enables us for a better understanding of camptothecin biogenetic reasoning. The underlying enzymes involved in camptothecin biosynthesis were also proposed according to the guiding metabolic map, thus purposefully mining of enzymes involved in the downstream biosynthetic pathway of camptothecin could be initiated with the help of this map.


Assuntos
Alcaloides/análise , Vias Biossintéticas , Camptotheca/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Camptotecina/análogos & derivados , Camptotecina/análise , Camptotecina/química , Camptotecina/metabolismo , Carbolinas/análise , Carbolinas/química , Bases de Dados como Assunto , Análise Discriminante , Glicosídeos/análise , Glicosídeos/química , Alcaloides Indólicos/análise , Alcaloides Indólicos/química , Análise dos Mínimos Quadrados , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Análise Multivariada , Análise de Componente Principal
14.
ACS Appl Mater Interfaces ; 12(2): 2145-2151, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31845568

RESUMO

Two-dimensional (2D) luminescent materials have received tremendous attention for their intrinsic properties and promising practical applications. Achieving 2D luminescent materials with high photoluminescence (PL) efficiency is still a great challenge. Here, ultrathin metal-free 2D luminescent nanosheets of 2,5,8-triamino-tri-s-triazine (melem) are synthesized through a facile liquid exfoliation process assisted by ultrasound. The as-obtained melem nanosheets distribute in the size range from a few nanometers to around 150 nm with a thickness of about 5 to 6 atomic layers. Melem nanosheets exhibit efficient blue emission with a PL efficiency as high as 77.09%, much higher than the heavily explored 2D luminescent g-C3N4 nanosheets. The high efficiency of melem nanosheets comes from the absence of atom vacancies and the low carrier mobility. Benefiting from the easy synthesis, good stability, low cell toxicity, and high efficiency, melem nanosheets are successfully applied as bioimaging materials on human breast cancer cells, requiring no extra treatments such as surface coating or functionalization. These metal-free 2D luminescent melem nanosheets hold great potential for various applications including bioimaging and other biorelated applications.


Assuntos
Diagnóstico por Imagem , Compostos Heterocíclicos com 3 Anéis/química , Luminescência , Metais/química , Nanoestruturas/química , Triazinas/química , Sobrevivência Celular , Elétrons , Grafite/química , Humanos , Células MCF-7 , Nanoestruturas/ultraestrutura , Compostos de Nitrogênio/química , Difração de Raios X
15.
Fitoterapia ; 134: 113-128, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30794920

RESUMO

The plant derived camptothecin (CPT) is a pentacyclic pyrroloquinoline alkaloid with unique antitumor activity. Successive discoveries of new CPT-producing plants occurred in recent years due to market demands. The scattered distribution among angiosperms drew researchers' attention. The aim of this review is to appraise the literature available to date for CPT distribution and the phytochemistry of these CPT-producing plants. Metabolite comparative analyses between the plants were also conducted for tracking of possible clues for CPT biosynthesis. Forty-three plant species in total were reported to possess CPT-producing capability, and one hundred twenty-five alkaloids classified into three major categories are summarized herein. Metabolite comparative analysis between these plants suggests the probability that the formation of the central intermediate for CPT biosynthesis has multiple origins. A more complete biogenetic reasoning for CPT and its structural homolog was delineated based on this fragmentary phytochemical evidence from a chemical point of view. Furthermore, an in-house compound database was constructed for further metabolomic analysis.


Assuntos
Antineoplásicos Fitogênicos/biossíntese , Camptotecina/biossíntese , Magnoliopsida/química , Magnoliopsida/classificação , Estrutura Molecular , Compostos Fitoquímicos/biossíntese
16.
Adv Mater ; 30(18): e1707122, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575255

RESUMO

Conversion-type anodes with multielectron reactions are beneficial for achieving a high capacity in sodium-ion batteries. Enhancing the electron/ion conductivity and structural stability are two key challenges in the development of high-performance sodium storage. Herein, a novel multidimensionally assembled nanoarchitecture is presented, which consists of V2 O3 nanoparticles embedded in amorphous carbon nanotubes that are then coassembled within a reduced graphene oxide (rGO) network, this materials is denoted V2 O3 ⊂C-NTs⊂rGO. The selective insertion and multiphase conversion mechanism of V2 O3 in sodium-ion storage is systematically demonstrated for the first time. Importantly, the naturally integrated advantages of each subunit synergistically provide a robust structure and rapid electron/ion transport, as confirmed by in situ and ex situ transmission electron microscopy experiments and kinetic analysis. Benefiting from the synergistic effects, the V2 O3 ⊂C-NTs⊂rGO anode delivers an ultralong cycle life (72.3% at 5 A g-1 after 15 000 cycles) and an ultrahigh rate capability (165 mAh g-1 at 20 A g-1 , ≈30 s per charge/discharge). The synergistic design of the multidimensionally assembled nanoarchitecture produces superior advantages in energy storage.

17.
Sci Bull (Beijing) ; 63(18): 1208-1214, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36751090

RESUMO

As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range, the nanoscale size effect can play a subtle yet critical role in mediating the chemical activity of Cu and therefore its miscibility with Li, such that the electrochemical alloying and solid-state amorphization will occur in such an immiscible system. This unusual observation was accomplished by performing in-situ studies of the electrochemical lithiation processes of individual CuO nanowires inside a transmission electron microscopy (TEM). Upon lithiation, CuO nanowires are first electrochemically reduced to form discrete ultrasmall Cu nanocrystals that, unexpectedly, can in turn undergo further electrochemical lithiation to form amorphous CuLix nanoalloys. Real-time TEM imaging unveils that there is a critical grain size (ca. 6 nm), below which the nanocrystalline Cu particles can be continuously lithiated and amorphized. The possibility that the observed solid-state amorphization of Cu-Li might be induced by electron beam irradiation effect can be explicitly ruled out; on the contrary, it was found that electron beam irradiation will lead to the dealloying of as-formed amorphous CuLix nanoalloys.

18.
Front Plant Sci ; 8: 559, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579990

RESUMO

Olive trees, originated from Mediterranean, have been cultivated in China for decades and show great adaption to local environment. However, research on this topic is limited. In this study, the major qualitative characteristics and changes of olive grown in southwest China were investigated. The results showed that oil accumulated during fruit development and reached its maximum value when fruit had fully ripened. Phenolic and flavonoid contents increase rapidly in the early growth stage (0-90 DAFB) and then begin to decrease as fruit ripens. Compared with olive from the Mediterranean, olive from China has special characteristics: higher moisture content in the fruit combined with lower percentages of unsaturated fatty acids and oil content. This is due to southwest China's climate which is wetter and cooler compared to the Mediterranean. Our study suggests that southwest China's higher annual rainfall might contribute to higher fruit moisture content while its low temperatures would be conducive to higher unsaturated fatty acid levels in the fruit.

19.
Adv Mater ; 29(48)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28429541

RESUMO

The modular assembly of microstructures from simple nanoparticles offers a powerful strategy for creating materials with new functionalities. Such microstructures have unique physicochemical properties originating from confinement effects. Here, the modular assembly of scattered ketjen black nanoparticles into an oval-like microstructure via double "Fischer esterification," which is a form of surface engineering used to fine-tune the materials surface characteristics, is presented. After carbonization, the oval-like carbon microstructure shows promise as a candidate sulfur host for the fabrication of thick sulfur electrodes. Indeed, a specific discharge capacity of 8.417 mAh cm-2 at 0.1 C with a high sulfur loading of 8.9 mg cm-2 is obtained. The large-scale production of advanced lithium-sulfur battery pouch cells with an energy density of 460.08 Wh kg-1 @18.6 Ah is also reported. This work provides a radically different approach for tuning the performance of a variety of surfaces for energy storage materials and biological applications by reconfiguring nanoparticles into desired structures.

20.
Angew Chem Int Ed Engl ; 54(50): 15222-5, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26473399

RESUMO

An in-depth mechanistic understanding of the electrochemical lithiation process of tungsten oxide (WO3 ) is both of fundamental interest and relevant for potential applications. One of the most important features of WO3 lithiation is the formation of the chemically flexible, nonstoichiometric Lix WO3 , known as tungsten bronze. Herein, we achieved the real-time observation of the deep electrochemical lithiation process of single-crystal WO3 nanowires by constructing in situ transmission electron microscopy (TEM) electrochemical cells. As revealed by nanoscale imaging, diffraction, and spectroscopy, it is shown that the rapid and deep lithiation of WO3 nanowires leads to the formation of highly disordered and near-amorphous Lix WO3 phases, but with no detectable traces of elemental W and segregated Li2 O phase formation. These results highlight the remarkable chemical and structural flexibility of the Lix WO3 phases in accommodating the rapid and deep lithiation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...