Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 162(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145455

RESUMO

CONTEXT: The key gut microbial biomarkers for polycystic ovarian syndrome (PCOS) and how dysbiosis causes insulin resistance and PCOS remain unclear. OBJECTIVE: To assess the characteristics of intestinal flora in PCOS and explore whether abnormal intestinal flora can affect insulin resistance and promote PCOS and whether chenodeoxycholic acid (CDCA) can activate intestinal farnesoid X receptor (FXR), improving glucose metabolism in PCOS. SETTING AND DESIGN: The intestinal flora of treatment-naïve PCOS patients and hormonally healthy controls was analyzed. Phenotype analysis, intestinal flora analysis, and global metabolomic profiling of caecal contents were performed on a letrozole-induced PCOS mouse model; similar analyses were conducted after 35 days of antibiotic treatment on the PCOS mouse model, and glucose tolerance testing was performed on the PCOS mouse model after a 35-day CDCA treatment. Mice receiving fecal microbiota transplants from PCOS patients or healthy controls were evaluated after 10 weeks. RESULTS: Bacteroides was significantly enriched in treatment-naïve PCOS patients. The enrichment in Bacteroides was reproduced in the PCOS mouse model. Gut microbiota removal ameliorated the PCOS phenotype and insulin resistance and increased relative FXR mRNA levels in the ileum and serum fibroblast growth factor 15 levels. PCOS stool-transplanted mice exhibited insulin resistance at 10 weeks but not PCOS. Treating the PCOS mouse model with CDCA improved glucose metabolism. CONCLUSIONS: Bacteroides is a key microbial biomarker in PCOS and shows diagnostic value. Gut dysbiosis can cause insulin resistance. FXR activation might play a beneficial rather than detrimental role in glucose metabolism in PCOS.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Síndrome do Ovário Policístico/microbiologia , Animais , Bacteroides , Biomarcadores/metabolismo , Estudos de Casos e Controles , Ácido Quenodesoxicólico/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Letrozol/farmacologia , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , RNA Ribossômico 16S , Receptores Citoplasmáticos e Nucleares/metabolismo , Análise de Sequência de DNA
2.
Int J Syst Evol Microbiol ; 70(5): 2988-2997, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32369000

RESUMO

A novel, Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, obligately anaerobic bacterium, designated strain ZHW00191T, was isolated from human faeces and characterized by using a polyphasic taxonomic approach. Growth occurred at 25-45 °C (optimum, 37-42 °C), at pH 5.5-10.0 (optimum, pH 6.5-7.0) and with 0-2 % (w/v) NaCl (optimum, 0 %). The end products of glucose fermentation were acetic acid, isobutyric acid and isovaleric acid and a small amount of propionic acid. The dominant cellular fatty acids (>10 %) of strain ZHW00191T were C16 : 0, C18 : 1 ω9с and C18 : 2ω6,9с. Its polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and ten unidentified glycolipids. Respiratory quinones were not detected. The cell-wall peptidoglycan contained meso-2,6-diaminopimelic acid, and the whole-cell sugars were ribose and glucose. The genomic DNA G+C content was 32.8 mol%. Analysis of the 16S rRNA gene sequence indicated that ZHW00191T was most closely related to Clostridium hiranonis TO-931T (95.3 % similarity). Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses with closely related reference strains indicated that reassociation values were both well below the thresholds of 95-96% and 70 % for species delineation, respectively. Based on phenotypic, chemotaxonomic and genetic studies, a novel genus, Peptacetobacter gen. nov., is proposed. The novel isolate ZHW00191T (=JCM 33482T=GDMCC 1.1530T) is proposed as the type strain of the type species Peptacetobacter hominis gen. nov., sp. nov. of the proposed new genus. Furthermore, it is proposed that Clostridium hiranonis be transferred to this novel genus, as Peptacetobacter hiranonis comb. nov.


Assuntos
Clostridium/classificação , Fezes/microbiologia , Bacilos Gram-Positivos Formadores de Endosporo/classificação , Filogenia , Adulto , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Glicolipídeos/química , Bacilos Gram-Positivos Formadores de Endosporo/isolamento & purificação , Humanos , Masculino , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...