Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1596, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383670

RESUMO

Self-monitoring materials have promising applications in structural health monitoring. However, developing organic afterglow materials for self-monitoring is a highly intriguing yet challenging task. Herein, we design two organic molecules with a twisted donor-acceptor-acceptor' configuration and achieve dual-emissive afterglow with tunable lifetimes (86.1-287.7 ms) by doping into various matrices. Based on a photosensitive resin, a series of complex structures are prepared using 3D printing technology. They exhibit tunable afterglow lifetime and Young's Modulus by manipulating the photocuring time and humidity level. With sufficient photocuring or in dry conditions, a long-lived bright green afterglow without apparent deformation under external loading is realized. We demonstrate that the mechanical properties of complex 3D printing structures can be well monitored by controlling the photocuring time and humidity, and quantitively manifested by afterglow lifetimes. This work casts opportunities for constructing flexible 3D printing devices that can achieve sensing and real-time mechanical detection.

2.
Angew Chem Int Ed Engl ; 62(39): e202301896, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37288654

RESUMO

Thermally activated delayed fluorescence (TADF) materials have attracted great potential in the field of organic light-emitting diodes (OLEDs). Among thousands of TADF materials, highly twisted TADF emitters have become a hotspot in recent years. Compared with traditional TADF materials, highly twisted TADF emitters tend to show multi-channel charge-transfer characters and form rigid molecular structures. This is advantageous for TADF materials, as non-radiative decay processes can be suppressed to facilitate efficient exciton utilization. Accordingly, OLEDs with excellent device performances have also been reported. In this Review, we have summarized recent progress in highly twisted TADF materials and related devices, and give an overview of the molecular design strategies, photophysical studies, and the performances of OLED devices. In addition, the challenges and perspectives of highly twisted TADF molecules and the related OLEDs are also discussed.

3.
Adv Mater ; 35(21): e2212273, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36896893

RESUMO

Organic mechanoluminescent (ML) materials possessing photophysical properties that are sensitive to multiple external stimuli have shown great potential in many fields, including optic and sensing. Particularly, the photoswitchable ML property for these materials is fundamental to their applications but remains a formidable challenge. Herein, photoswitchable ML is successfully realized by endowing reversible photochromic properties to an ML molecule, namely 2-(1,2,2-triphenylvinyl) fluoropyridine (o-TPF). o-TPF shows both high-contrast photochromism with a distinct color change from white to purplish red, as well as bright blue ML (λML  = 453 nm). The ML property can be repeatedly switched between ON and OFF states under alternate UV and visible light irradiation. Impressively, the photoswitchable ML is of high stability and repeatability. The ML can be reversibly switched on and off by conducting alternate UV and visible light irradiation in cycles under ambient conditions. Experimental results and theoretical calculations reveal that the change of dipole moment of o-TPF during the photochromic process is responsible for the photoswitchable ML. These results outline a fundamental strategy to achieve for the control of organic ML and pave the way to the development of expanded smart luminescent materials and their applications.

4.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759174

RESUMO

The role of dietary tannin in inflammatory bowel disease (IBD) is still not clear. Therefore, we aim to study the effect of TA in the progression of IBD. Dextran sulphate sodium (DSS)-induced model was used to mimic IBD. Metagenomics and metabolomics were performed to study the alteration of intestinal microbiota and metabolites. NCM460 and THP-1 cells were used for in vitro study. The amount of TA was associated with the outcomes of DSS-induced IBD as evidenced by in vivo and in vitro studies. Metabolomic and metagenomic analyses revealed that TA-induced enrichment of microbial metabolite gallic acid (GA) was responsible for the action of TA. Mechanistically, protective dose of GA promoted colonic mucus secretion to suppress bacterial infection and that it ameliorated DSS-induced epithelial damage by inhibiting p53 signaling, whereas toxic dose of GA directly caused epithelial damage by promoting cell cycle arrest. Therapeutic experiment showed protective dose of GA-promoted recovery of DSS-induced colonic inflammation. The role of tannase-containing bacteria can be transformed under different conditions in IBD progression.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Probióticos , Humanos , Colite/induzido quimicamente , Taninos/efeitos adversos , Taninos/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Probióticos/farmacologia , Bactérias/metabolismo
5.
Research (Wash D C) ; 2022: 9834140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157512

RESUMO

Photoresponsive materials have been widely used in sensing, bioimaging, molecular switches, information storage, and encryption nowadays. Although a large amount of photoresponsive materials have been reported, the construction of these smart materials into precisely prescribed complex 3D geometries is rarely studied. Here we designed a novel photoresponsive material methyl methacrylate containing triphenylethylene (TrPEF2-MA) that can be directly used for digital light processing (DLP) 3D printing. Based on TrPEF2-MA, a series of photoresponsive 3D structures with reversible color switching under ultraviolet/visible light irradiations were fabricated. These complex photoresponsive 3D structures show high resolutions (50 µm), excellent repeatability (25 cycles without fatigue), and tunable saturate color degrees. Multicomponent DLP 3D printing processes were also carried out to demonstrate their great properties in information hiding and information-carrying properties. This design strategy for constructing photoresponsive 3D structures is attractive in the area of adaptive camouflage, information hiding, information storage, and flexible electronics.

6.
Chem Sci ; 13(31): 8906-8923, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36091200

RESUMO

Near-infrared (NIR) light-emitting materials show excellent potential applications in the fields of military technology, bioimaging, optical communication, organic light-emitting diodes (OLEDs), etc. Recently, thermally activated delayed fluorescence (TADF) emitters have made historic developments in the field of OLEDs. These metal-free materials are more attractive because of efficient reverse intersystem crossing processes which result in promising high efficiencies in OLEDs. However, the development of NIR TADF emitters has progressed at a relatively slower pace which could be ascribed to the difficult promotion of external quantum efficiencies. Thus, increasing attention has been paid to NIR TADF emitters. In this review, the recent progress of NIR TADF emitters has been summarized along with their molecular design strategies and photophysical properties, as well as electroluminescence performance data of their OLEDs, respectively.

7.
Food Funct ; 13(20): 10665-10679, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36172720

RESUMO

The improvement of lipid metabolism by capsaicin (CAP) has been extensively studied, mostly with respect to the vanilloid type 1 (TRPV1) ion channel and intestinal flora. In this study, a model was established in germ-free mice by using resiniferatoxin (RTX) to ablate TRPV1 ion channels. Bile acid composition, blood parameters, and colonic transcriptome analyses revealed that CAP could improve dyslipidemia caused by high-fat diet even in the absence of TRPV1 ion channels and intestinal flora. CAP fed to germ mice decreased the concentrations of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), fasting blood glucose and fasting insulin, increased the concentration of high-density lipoprotein (HDL-C), and decreased the levels of plasma endotoxin and pro-inflammatory factor interleukin 6 (IL-6). Furthermore, CAP could affect both classical and alternative pathways of cholesterol conversion by changing the composition of bile acids, reducing the concentrations of glycocholic acid (GCA), ursodeoxycholic acid (UDCA) and glycochenodeoxycholic acid (GCDCA). First, changing the composition of bile acids inhibited the expression of colon Fgf15. CAP promoted the expression of Cyp7a1 (Cytochrome p450, family 7, subfamily a, and polypeptide 1) in the liver, and thus reduced TC and TG levels. In addition, it could change the composition of bile acids and increase the expression of Cyp7b1 (Cytochrome p450, family 7, subfamily b, and polypeptide 1) in the colon, increase Cyp7b1 protein in the liver and thus inhibit fat accumulation. In conclusion, CAP could alter the composition of bile acids and promote the conversion of cholesterol to bile acids, thereby improving lipid metabolism abnormalities caused by a high-fat diet.


Assuntos
Dislipidemias , Insulinas , Animais , Ácidos e Sais Biliares/metabolismo , Glicemia/metabolismo , Capsaicina , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , LDL-Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Endotoxinas , Ácido Glicoquenodesoxicólico/metabolismo , Insulinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipoproteínas HDL , Fígado/metabolismo , Camundongos , Triglicerídeos/metabolismo , Ácido Ursodesoxicólico/metabolismo
8.
Research (Wash D C) ; 2021: 9816535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870227

RESUMO

Photodeformable materials are a class of molecules that can convert photon energy into mechanical energy, which have attracted tremendous attention in the last few decades. Owing to their unique photoinduced deformable properties, including fast light-response and diverse mechanical behaviors, photodeformable materials have exhibited great potential in many practical applications such as actuators, photoswitches, artificial muscles, and bioimaging. In this review, we sort out the current state of photodeformable crystals and classify them into six categories by molecular structures: diarylethenes, azobenzenes, anthracenes, olefins, triarylethylenes, and other systems. Three distinct light-responsive mechanisms, photocyclization, trans-cis isomerization, and photodimerization, are revealed to play significant roles in the molecular photodeformation. Their corresponding photodeformable behaviors such as twisting, bending, hopping, bursting, and curling, as well as the potential applications, are also discussed. Furthermore, the challenges and prospective development directions of photodeformable crystals are highlighted.

9.
Front Chem ; 9: 766179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34738006

RESUMO

In this work, a new series of 2-hydroxybenzophenone (BPOH) derivatives, BPOH-TPA, BPOH-PhCz, and BPOH-SF substituting with different electron-donating groups are designed and synthesized. Dual-emission spectra are observed in solutions indicating their excited-state intramolecular proton transfer (ESIPT) character. In solid states, all compounds exhibit a broad emission spectrum when excited at low excitation energy, deriving from the enol-type form stabilized by intramolecular hydrogen bonds. Compound BPOH-TPA shows a clear excitation wavelength dependence. However, such behavior is absent in BPOH-PhCz and BPOH-SF, as the rigid and weaker donor moieties may restrict this process. Furthermore, by increasing the excitation energy, dual emission with a high-energy band ranging from 550 to 582 nm and a low-energy band ranging from 625 to 638 nm is obtained in all three molecules. The photophysical studies and single-crystal analyses are performed to further illustrate the excitation-dependent emission. Higher excitation energies can promote more excitons to keto forms via ESIPT, giving a stronger redshifted emission. BPOH-TPA with a stronger donor strength exhibits an obvious color change gradually from yellow to orange-red with the increasing excitation power from 1 to 15 mW/cm2. This study provides a novel example of ESIPT materials with tunable emission colors.

10.
Adv Sci (Weinh) ; 7(7): 1902087, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32274295

RESUMO

Although numerous thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) have been demonstrated, efficient blue or even sky-blue TADF-based nondoped solution-processed devices are still very rare. Herein, through-space charge transfer (TSCT) and through-bond charge transfer (TBCT) effects are skillfully incorporated, as well as the multi-(donor/acceptor) characteristic, into one molecule. The former allows this material to show small singlet-triplet energy splitting (ΔE ST) and a high transition dipole moment. The latter, on the one hand, further lights up multichannel reverse intersystem crossing (RISC) to increase triplet exciton utilization via degenerating molecular orbitals. On the other hand, the nature of the molecular twisted structure effectively suppresses intermolecular packing to obtain high photoluminescence quantum yield (PLQY) in neat flims. Consequently, using this design strategy, T-CNDF-T-tCz containing three donor and three acceptor units, successfully realizes a small ΔE ST (≈0.03 eV) and a high PLQY (≈0.76) at the same time; hence the nondoped solution-processed sky-blue TADF-OLED displays record-breaking efficiency among the solution process-based nondoped sky-blue OLEDs, with high brightness over 5200 cd m-2 and external quantum efficiency up to 21.0%.

11.
ACS Appl Mater Interfaces ; 11(11): 10758-10767, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30793589

RESUMO

A series of blue thermally activated delayed fluorescence (TADF) emitters were designed and synthesized using 2,4,6-triphenyl-1,3,5-triazine as the acceptor unit and indenocarbazole derivatives as the electron-donating moiety. In contrast with other six-membered heterocycles, like phenothiazine, phenoxazine, and dihydroacridine, where the TADF efficiency is affected by the presence of different conformers, indenocarbazole derivatives do not show this effect. Therefore, InCz23FlTz, InCz23DPhTz, InCz23DMeTz, and InCz34DPhTz allow the investigation of the effect of different substituents and substitution positions on TADF properties, without the influence of different conformations. We have demonstrated that the substituted position on the carbazole and different substituents in the same position have clear influence on the donor character of indenocarbazole derivatives. Also, the color purity of blue emission and excited states could be adjusted by substituents and substituted position, and thus excellent blue emitters can be obtained. Besides, the four compounds show relatively small TADF contribution under optical excitation; however, excellent performances are obtained in the electroluminescent devices, especially with InCz34DPhTz, which shows a maximum external quantum efficiency of around 26%. In the end, we find an effective way to design high-efficiency blue TADF materials and deeply study the relation between the structure and property in indenocarbazole derivatives.

12.
Phys Chem Chem Phys ; 21(7): 3814-3821, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30698176

RESUMO

Phenazine derivative molecules were studied using steady state and time resolved fluorescence techniques and demonstrated to lead to strong formation of aggregated species, identified as dimers by time dependent density functional theory calculations. Blended films in a matrix of Zeonex®, produced at different concentrations, showed different contributions of dimer and monomer emissions in a prompt time frame, e.g. less than 50 ns. In contrast, the phosphorescence (e.g. emission from the triplet state) shows no significant effect on dimer formation, although strong dependence of the phosphorescence intensity on concentration is observed, leading to phosphorescence being quenched at higher concentration.

13.
Angew Chem Int Ed Engl ; 57(50): 16407-16411, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30339314

RESUMO

Chemical modification of phenothiazine-benzophenone derivatives tunes the emission behavior from triplet states by selecting the geometry of the intramolecular charge transfer (ICT) state. A fundamental principle of planar ICT (PICT) and twisted ICT (TICT) is demonstrated to obtain selectively either room temperature phosphorescence (RTP) or thermally activated delayed fluorescence (TADF), respectively. Time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) investigations on polymorphic single crystals demonstrate the roles of PICT and TICT states in the underlying photophysics. This has resulted in a RTP molecule OPM, where the triplet states contribute with 89 % of the luminescence, and an isomeric TADF molecule OMP, where the triplet states contribute with 95 % of the luminescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...