Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 7: 878, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921789

RESUMO

Metal oxides have been attractive as high-capacity anode materials for lithium-ion batteries. However, oxide anodes encounter drastic volumetric changes during lithium ion storage through the conversion reaction and alloying/dealloying processes, leading to rapid capacity decay and poor cycling stability. Here, we report a free-standing SnO2@reduced graphene oxide (SnO2@rGO) composite anode, in which SnO2 nanoparticles are tightly wrapped within wrinkled rGO sheets. The SnO2@rGO sheet is assembled in high porosity via an anti-solvent-assisted precipitation of dispersed SnO2 nanoparticles and graphene oxide sheets in the distilled water, followed by the filtration and post-annealing processes. Significantly enhanced lithium storage performance has been obtained of the SnO2@rGO anode compared with the bare SnO2 anode material. A high charge capacity above 700 mAh g-1 can be achieved with a satisfying 95.6% retention after 50 cycles at a current density of 500 mA g-1, superior to reserved 126 mAh g-1 and a much lower 16.8% retention of the bare SnO2 anode. XRD pattern and HRTEM images of the cycled SnO2@rGO anode material verify the expected oxidation of Sn to SnO2 at the fully-charged state in the 50th cycle. In addition, FESEM and TEM images reveal the well-preserved free-standing structure after cycling, which accounts for high reversible capacity and excellent cycling stability of such a SnO2@rGO anode. This work provides a promising SnO2-based anode for high-capacity lithium-ion batteries, together with an effective fabrication adoptable to prepare different free-standing composite materials for device applications.

2.
ACS Appl Mater Interfaces ; 9(36): 31181-31191, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829119

RESUMO

A surfactant-free sonication-induced route is developed to facilely prepare colloidal nanocrystals of Li-excess layered Li1.2Mn0.54Ni0.13Co0.13O2 (marked as LMNCO) material. The sonication process plays a critical role in forming LMNCO nanocrystals in ethanol (ethanol molecules marked as EtOHs) and inducing the interaction between LMNCO and solvent molecules. The formation mechanism of LMNCO-EtOH supramolecules in the colloidal dispersion system is proposed and examined by the theoretical simulation and light scattering technique. It is suggested that the as-formed supramolecule is composed of numerous ethanol molecules capping the surface of the LMNCO nanocrystal core via hydrogen bonding. Such chemisorption gives rise to dielectric polarization of the absorbed ethanol molecules, resulting in a negative surface charge of LMNCO colloids. The self-assembly behaviors of colloidal LMNCO nanocrystals are then tentatively investigated by tuning the solvent evaporation condition, which results in diverse superstructures of LMNCO materials after the evaporation of ethanol. The reassembled LMNCO architectures exhibit remarkably improved capacity and cyclability in comparison with the original LMNCO particles, demonstrating a very promising cathode material for high-energy lithium-ion batteries. This work thus provides new insights into the formation and self-assembly of multiple-element complex inorganic colloids in common and surfactant-free solvents for enhanced performance in device applications.

3.
Funct Integr Genomics ; 17(2-3): 365-373, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28078489

RESUMO

MicroRNAs (miRNAs) are important regulators of plant development and fruit formation. Mature embryos of hickory (Carya cathayensis Sarg.) nuts contain more than 70% oil (comprising 90% unsaturated fatty acids), along with a substantial amount of oleic acid. To understand the roles of miRNAs involved in oil and oleic acid production during hickory embryogenesis, three small RNA libraries from different stages of embryogenesis were constructed. Deep sequencing of these three libraries identified 95 conserved miRNAs with 19 miRNA*s, 7 novel miRNAs (as well as their corresponding miRNA*s), and 26 potentially novel miRNAs. The analysis identified 15 miRNAs involved in oil and oleic acid production that are differentially expressed during embryogenesis in hickory. Among them, nine miRNA sequences, including eight conserved and one novel, were confirmed by qRT-PCR. In addition, 145 target genes of the novel miRNAs were predicted using a bioinformatic approach. Our results provide a framework for better understanding the roles of miRNAs during embryogenesis in hickory.


Assuntos
Carya/genética , MicroRNAs/genética , Carya/embriologia , Desenvolvimento Embrionário , Humanos
4.
Small ; 11(27): 3358-68, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25683019

RESUMO

The unique properties of a holey graphene sheet, referred to as a graphene sheet with nanoholes in its basal plane, lead to wide range of applications that cannot be achieved by its nonporous counterpart. However, the large-scale solution-based production requires graphene oxide (GO) or reduced GO (rGO) as the starting materials, which take hours to days for fabrication. Here, an unexpected discovery that GO with or without holes can be controllably, directly, and rapidly (tens of seconds) fabricated from graphite powder via a one-step-one-pot microwave assisted reaction with a production yield of 120 wt% of graphite is reported. Furthermore, a fast and low temperature approach is developed for simultaneous nitrogen (N) doping and reduction of GO sheets. The N-doped holey rGO sheets demonstrate remarkable electrocatalytic capabilities for the electrochemical oxygen reduction reaction. The existence of the nanoholes provides a "short cut" for efficient mass transport and dramatically increases edges and surface area, therefore, creates more catalytic centers. The capability of rapid fabrication and N-doping as well as reduction of holey GO can lead to development of an efficient catalyst that can replace previous coin metals for energy generation and storage, such as fuel cells and metal-air batteries.

5.
Nano Lett ; 14(3): 1596-602, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24548267

RESUMO

The electroactive organic materials are promising alternatives to inorganic electrode materials for the new generation of green Li-ion batteries due to their sustainability, environmental benignity, and low cost. Croconic acid disodium salt (CADS) was used as Li-ion battery electrode, and CADS organic wires with different diameters were fabricated through a facile synthetic route using antisolvent crystallization method to overcome the challenges of low electronic conductivity of CADS and lithiation induced strain. The CADS nanowire exhibits much better electrochemical performance than its crystal bulk material and microwire counterpart. CADS nanowire with a diameter of 150 nm delivers a reversible capability of 177 mAh g(-1) at a current density of 0.2 C and retains capacity of 170 mAh g(-1) after 110 charge/discharge cycles. The nanowire structure also remarkably enhances the kinetics of croconic acid disodium salt. The CADS nanowire retains 50% of the 0.1 C capacity even when the current density increases to 6 C. In contrast, the crystal bulk and microwire material completely lose their capacities when the current density merely increases to 2 C. Such a high rate performance of CADS nanowire is attributed to its short ion diffusion pathway and large surface area, which enable fast ion and electron transport in the electrode. The theoretical calculation suggests that lithiation of CADS experiences an ion exchange process. The sodium ions in CADS will be gradually replaced by lithium ions during the lithiation and delithiation of CADS electrode, which is confirmed by inductively coupled plasma test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA