Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 4(2): 100494, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36419363

RESUMO

Secondary vascular development is a key biological characteristic of woody plants and the basis of wood formation. Our understanding of gene expression regulation and dynamic changes in microRNAs (miRNAs) during secondary vascular development is still limited. Here we present an integrated analysis of the miRNA and mRNA transcriptome of six phase-specific tissues-the shoot apex, procambium, primary vascular tissue, cambium, secondary phloem, and secondary xylem-in Populus tomentosa. Several novel regulatory modules, including the PtoTCP20-miR396d-PtoGRF15 module, were identified during secondary vascular development in Populus. A series of biochemical and molecular experiments confirmed that PtoTCP20 activated transcription of the miR396d precursor gene and that miR396d targeted PtoGRF15 to downregulate its expression. Plants overexpressing miR396d (35S:miR396d) showed enhanced secondary growth and increased xylem production. Conversely, during the transition from primary to secondary vascular development, plants with downregulated PtoTCP20expression (PtoTCP20-SRDX), downregulated miR396 expression (35S:STTM396), and PtoGRF15 overexpression (35S:PtoGRF15) showed delayed secondary growth. Novel regulatory modules were identified by integrated analysis of the miRNA and mRNA transcriptome, and the regulatory role of the PtoTCP20-miR396d-PtoGRF15 signaling cascade in secondary vascular development was validated in Populus, providing information to support improvements in forest cultivation and wood properties.


Assuntos
MicroRNAs , Populus , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , RNA Mensageiro/metabolismo
3.
Polymers (Basel) ; 13(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668134

RESUMO

Biochar is a byproduct generated from the hydrothermal liquefaction of biomass, such as corn stover, in an anaerobic environment. This work aims to convert biochar into a value-added product of carbon nanofibrous felt. First, the biochar-containing precursor membrane was prepared from simultaneous electrospinning and electrospraying. After thermal stabilization in air and carbonization in argon, the obtained precursor membrane was converted into a mechanically flexible and robust carbon nanofibrous felt. Electrochemical results revealed that the biochar-derived carbon nanofibrous felt might be a good candidate as a supercapacitor electrode with a good rate capability and high kinetic performance.

4.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008486

RESUMO

Styrene acrylic emulsions (SAEs) have emerged as a promising material for water-based coatings. However, they are still limited by their own defects in practical applications, poor weatherability, and degradation of performance at lower or higher temperatures. Here, we introduce a facile approach to producing fluorescent carbon quantum dots (CQDs) from wood processing residues and fabricating fluorescent CQD/SAE coating films via emulsion-casting. The addition of the fluorescent CQDs enhanced the optical performance of the CQD/SAE coating films. The fluorescent CQDs were prepared via a hydrothermal approach and were obtained after heating at 180 °C for 6 h at a reaction concentration of 50 mg/mL. The synthesized CQDs resulted in a high fluorescence, and the CQDs had an average size of 1.63 nm. Various concentrations of the fluorescent CQDs were doped into the SAE coating film, which improved its optical properties. We also characterized and discussed the products and then explored their optical properties. This study presents the potential of fluorescent CQD/SAE coating films for applications in anti-counterfeiting coatings, fluorescent adhesives, and papermaking.


Assuntos
Carbono/química , Corantes/química , Emulsões/química , Pontos Quânticos/química , Estireno/química , Fluorescência
5.
Polymers (Basel) ; 12(11)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172008

RESUMO

The effects of chitosan (CTS) as the reinforcing phase on the properties of potato starch (PS)-based foams were studied in this work. The formic acid solutions of CTS and PS were uniformly mixed in a particular ratio by blending and then placed in a mold made of polytetrafluoroethylene for microwave treatment to form starch foam. The results showed that the molecular weight and concentration of CTS could effectively improve the density and compressive properties of starch-based foams. Furthermore, orthogonal experiments were designed, and the results showed that when the molecular weight of CTS in foams is 4.4 × 105, the mass fraction is 4 wt%, and the mass ratio of CTS-PS is 3/4.2; the compressive strength of foams is the highest at approximately 1.077 mPa. Furthermore, Fourier transform infrared spectroscopy analysis demonstrated the interaction between starch and CTS, which confirmed that the compatibility between CTS and PS is excellent.

6.
Polymers (Basel) ; 12(11)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153103

RESUMO

Studies on the influence of drying processes on cellulose nanofiber (CNF) aerogel performance has always been a great challenge. In this study, CNF aerogels were prepared via two different drying techniques. The CNF solution was prepared via existing chemical methods, and the resultant aerogel was fabricated through supercritical CO2 drying and liquid nitrogen freeze-drying techniques. The microstructure, shrinkage, specific surface area, pore volume, density, compression strength, and isothermal desorption curves of CNF aerogel were characterized. The aerogel obtained from the liquid nitrogen freeze-drying method showed a relatively higher shrinkage, higher compression strength, lower specific surface area, higher pore volume, and higher density. The N2 adsorption capacity and pore diameter of the aerogel obtained via the liquid nitrogen freeze-drying method were lower than the aerogel that underwent supercritical CO2 drying. However, the structures of CNF aerogels obtained from these two drying methods were extremely similar.

7.
Polymers (Basel) ; 12(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028012

RESUMO

Thermogravimetric analysis (TGA) was used for the observation of the pyrolysis kinetics characteristics of high density polyethylene (HDPE)-based composites enhanced by a variety of basalt fibers (BFs) and wood flour (WF). The improved Coats-Redfern (C-R), Flynn-Wall-Ozawa (F-W-O), Friedman, and Kissinger methods were utilized to ascertain the specific apparent activation energy (Ea) of each component and composite material. The results indicate that BFs do not decompose under 800 °C, while the pyrolysis of WF and waste HDPE showed two significant weight loss zones (250-380 °C and 430-530 °C), relative to cellulose/hemicellulose and HDPE thermal degradation, respectively. The average Ea of WF/BF/HDPE composites over the entire pyrolysis process obtained by the modified C-R method fluctuated in a range of 145-204 kJ/mol and increased with the BF content, which was higher than that of WPC (115-171 kJ/mol). The value of Ea computed by the F-W-O method was significantly lower than that computed with the improved C-R method, which could validate the reliability of two methods by comparing with the literature. The Friedman and Kissinger methods were not applicable to this composite material reinforced by mixed fillers, so the obtained Ea values were quite different from the previous two methods. The changes in Ea showed that the addition of BFs could improve the average Ea and further enhance the thermal stability and flame resistance of the composites.

8.
Carbohydr Polym ; 246: 116548, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747235

RESUMO

Lignin-containing cellulose nanofibers (LCNFs) from energy cane bagasse (ECB), were prepared using microwave assisted deep eutectic solvent (MV-DES) treatment in combination with ultrasonication. The yield of lignocellulose is up to 45.2 % with 81.0 % delignification under the optimal reaction condition (110 ℃, 30 min). The resulting LCNF exhibited a highly entangled network, which was caused by the binder role of lignin between cellulose nanofibers. The addition of LCNFs improved the stability of the polyanionic cellulose (PAC) film-forming suspension, which was confirmed by the increased zeta potential and viscosity values. The LCNF / PAC films showed tunable mechanical and UV-resistant properties, depending on the amount and type of LCNFs. PAC films with the addition of 5 % LCNFs (PEF-5 %) showed good mechanical properties (a tensile strength of 55.8 MPa with a 26.3 % strain to break) and high UV protection ability (a UV-transmittance of 2.9 %).


Assuntos
Lignina/síntese química , Nanofibras/química , Solventes/química , Raios Ultravioleta , Celulose/química , Micro-Ondas , Fenômenos Físicos , Polieletrólitos/química , Resistência à Tração , Ondas Ultrassônicas , Viscosidade
9.
Sci Adv ; 6(26): eaaz2963, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637594

RESUMO

DNA demethylation is important for the erasure of DNA methylation. The role of DNA demethylation in plant development remains poorly understood. Here, we found extensive DNA demethylation in the CHH context around pericentromeric regions and DNA demethylation in the CG, CHG, and CHH contexts at discrete genomic regions during ectopic xylem tracheary element (TE) differentiation. While loss of pericentromeric methylation occurs passively, DNA demethylation at a subset of regions relies on active DNA demethylation initiated by DNA glycosylases ROS1, DML2, and DML3. The ros1 and rdd mutations impair ectopic TE differentiation and xylem development in the young roots of Arabidopsis seedlings. Active DNA demethylation targets and regulates many genes for TE differentiation. The defect of xylem development in rdd is proposed to be caused by dysregulation of multiple genes. Our study identifies a role of active DNA demethylation in vascular development and reveals an epigenetic mechanism for TE differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desmetilação do DNA , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
10.
Polymers (Basel) ; 12(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605235

RESUMO

This paper reports the usage of cellulose nanofibers (CNFs) as a continuous nanoporous matrix and nanoclay (NC) as additive to fabricate hybrid films. CNF/Cloisite Na+ nanoclay composite films containing 10-50 wt % of NC were prepared for the study. The effects of NC incorporation and its content on mechanical, wettability and thermal degradation properties were investigated. The results showed that the film had a multilayer structure with gradually deposited CNT-NC hybrid on the filter paper Pure CNF films had higher moduli compared with those from the composite films, as the incorporation of NC decreased hydrogen bonding and networking ability of CNFs, especially at the high NC loading levels. The composite films demonstrated self-extinguishing ability when being exposed to the open flame. Composites with over 35 wt % NC did not burn because of the formation of a protective barrier containing ordered NC platelets. The addition of montmorillonite NC led to increased surface water contact angle, showing enhanced hydrophobicity of the material. During the film's thermal pyrolysis, the first process occurred between 100 and 200 °C, resulting mainly from the evaporation of absorbed water; the second, between 280 and 350 °C, indicated thermal decomposition of cellulose; and the slow third stage happened from the 350 to 600 °C, representing carbonization. The results demonstrate that the apparent activation energies for all the CNF/NC composites were higher than the pure CNF film. CNF/NC films fabricated in this process are a promising barrier material for packaging applications.

11.
Materials (Basel) ; 12(2)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658486

RESUMO

Performance of hardened oil well cement (OWC) is largely determined by the rheological properties of the cement slurries. This work was carried out to investigate the effect of water- to-cement ratio (WCR) and cellulose nanoparticles (CNPs), including cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs), on rheology performance of OWC-based slurries using a Couette rotational viscometer coupled with rheological models. The yield stress and viscosity of neat OWC slurries had a decreasing trend with the increase of WCRs. The suspension became increased unstable with the increase of WCRs. The properties of CNPs, including rheological behaviors, surface properties and morphology, determine the rheological performance of CNP-OWC slurries. In comparison with CNC-OWC slurries, the gel strength, yield stress and viscosity of CNF-OWC slurries were higher as CNFs were more likely to form an entangled network. The gel strength, yield stress and viscosity of CNP-OWC slurries increased with reduced CNF size through regrinding and the proportion of CNFs in the mixture of CNFs and CNCs, respectively.

12.
Sci Rep ; 8(1): 9501, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934533

RESUMO

This study explores the effect of carbon sphere preparation conditions on the morphology of the carbon spheres and the micropore development by fast potassium hydroxide activation via microwave heating. Enzymatic hydrolysis lignin is used as the precursor for carbon sphere preparation via environmentally friendly hydrothermal carbonization. The effects of various carbonization temperatures, carbonization times and reaction concentrations on the physical morphology of the carbon sphere surfaces are investigated. The Brunauer-Emmett-Teller surface area, yield and scanning electron microscopic images are used to characterize the carbon spheres. High carbonization temperatures and times result in large particle sizes, high sphericity, uniform size, and high dispersity of the carbon spheres. The best carbon spheres are obtained at 270 °C for 7 hours with a reaction concentration of 0.06 g ml-1 and a particle size of 3-6 µm. After activation, the Brunauer-Emmett-Teller surface area of the activated carbon spheres increases from 248 m2 g-1 to 1278 m2 g-1. Carbon spheres activated by treatment with fast potassium hydroxide and microwave heating can develop micropores that enhance the adsorptive capacity for small molecules, such as gases. Enzymatic hydrolysis lignin-derived carbon spheres formed via hydrothermal carbonization should be potentially sustainable materials applicable in energy and environmental fields.

13.
Materials (Basel) ; 8(12): 8510-8523, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793726

RESUMO

Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs.

14.
Materials (Basel) ; 6(9): 4122-4138, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-28788322

RESUMO

The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...