Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 294: 120637, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714216

RESUMO

In recent years, brainprint recognition has emerged as a novel method of personal identity verification. Although studies have demonstrated the feasibility of this technology, some limitations hinder its further development into the society, such as insufficient efficiency (extended wear time for multi-channel EEG cap), complex experimental paradigms (more time in learning and completing experiments), and unclear neurobiological characteristics (lack of intuitive biomarkers and an inability to eliminate the impact of noise on individual differences). Overall, these limitations are due to the incomplete understanding of the underlying neural mechanisms. Therefore, this study aims to investigate the neural mechanisms behind brainwave recognition and simplify the operation process. We recorded prefrontal resting-state EEG data from 40 participants, which is followed up over nine months using a single-channel portable brainwave device. We found that portable devices can effectively and stably capture the characteristics of different subjects in the alpha band (8-13Hz) over long periods, as well as capturing their individual differences (no alpha peak, 1 alpha peak, or 2 alpha peaks). Through correlation analysis, alpha-band activity can reveal the uniqueness of the subjects compared to others within one minute. We further used a descriptive model to dissect the oscillatory and non-oscillatory components in the alpha band, demonstrating the different contributions of fine oscillatory features to individual differences (especially amplitude and bandwidth). Our study validated the feasibility of portable brainwave devices in brainwave recognition and the underlying neural oscillation mechanisms. The fine characteristics of various alpha oscillations will contribute to the accuracy of brainwave recognition, providing new insights for the development of future brainwave recognition technology.


Assuntos
Eletroencefalografia , Humanos , Masculino , Feminino , Adulto , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Adulto Jovem , Ritmo alfa/fisiologia , Encéfalo/fisiologia , Córtex Pré-Frontal/fisiologia
2.
Bioeng Transl Med ; 8(2): e10449, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925686

RESUMO

Hyperuricemia is a prevalent disease worldwide that is characterized by elevated urate levels in the blood owing to purine metabolic disorders, which can result in gout and comorbidities. To facilitate the treatment of hyperuricemia through the uricolysis, we engineered a probiotic Escherichia coli Nissle 1917 (EcN) named EcN C6 by inserting an FtsP-uricase cassette into an "insulated site" located between the uspG and ahpF genes. Expression of FtsP-uricase in this insulated region did not influence the probiotic properties or global gene transcription of EcN but strongly increased the enzymatic activity for urate degeneration, suggesting that the genome-based insulated system is an ideal strategy for EcN modification. Oral administration of EcN C6 successfully alleviated hyperuricemia, related symptoms and gut microbiota in a purine-rich food-induced hyperuricemia rat model and a uox-knockout mouse model. Together, our study provides an insulated site for heterologous gene expression in EcN strain and a recombinant EcN C6 strain as a safe and effective therapeutic candidate for hyperuricemia treatment.

3.
mBio ; 13(2): e0334321, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357209

RESUMO

Cell division must be coordinated with DNA repair, which is strictly regulated in response to different drugs and environmental stresses in bacteria. However, the mechanisms by which mycobacteria orchestrate these two processes remain largely uncharacterized. Here, we report a regulatory loop between two essential mycobacterial regulators, McdR (Rv1830) and WhiB2, in coordinating the processes of cell division and DNA repair. McdR inhibits cell division-associated whiB2 expression by binding to the AATnACAnnnnTGTnATT motif in the promoter region. Furthermore, McdR overexpression simultaneously activates imuAB and dnaE2 expression to promote error-prone DNA repair, which facilitates genetic adaptation to stress conditions. Through a feedback mechanism, WhiB2 activates mcdR expression by binding to the cGACACGc motif in the promoter region. Importantly, analyses of mutations in clinical Mycobacterium tuberculosis strains indicate that disruption of this McdR-WhiB2 feedback regulatory loop influences expression of both cell growth- and DNA repair-associated genes, which further supports the contribution of McdR-WhiB2 regulatory loop in regulating mycobacterial cell growth and drug resistance. This highly conserved feedback regulatory loop provides fresh insight into the link between mycobacterial cell growth control and stress responses. IMPORTANCE Drug-resistant M. tuberculosis poses a threat to the control and prevention of tuberculosis (TB) worldwide. Thus, there is a need to identify the mechanisms enabling M. tuberculosis to adapt and grow under drug-induced stress. Rv1830 has been shown to be associated with drug resistance in M. tuberculosis, but its mechanisms have not yet been elucidated. Here, we reveal a regulatory role of Rv1830, which coordinates cell division and DNA repair in mycobacteria, and rename it McdR (mycobacterial cell division regulator). An increase in McdR levels represses the expression of cell division-associated whiB2 but activates the DNA repair-associated, error-prone enzymes ImuA/B and DnaE2, which in turn facilitates adaptation to stress responses and drug resistance. Furthermore, WhiB2 activates the transcription of mcdR to form a conserved regulatory loop. These data provide new insights into the mechanisms controlling mycobacterial cell growth and stress responses.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Reparo do DNA , Retroalimentação , Mycobacterium tuberculosis/metabolismo
4.
mBio ; 12(3): e0145721, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154409

RESUMO

Human-pathogenic Yersinia species employ a plasmid-encoded type III secretion system (T3SS) to negate immune cell function during infection. A critical element in this process is the coordinated regulation of T3SS gene expression, which involves both transcriptional and posttranscriptional mechanisms. LcrQ is one of the earliest identified negative regulators of Yersinia T3SS, but its regulatory mechanism is still unclear. In a previous study, we showed that LcrQ antagonizes the activation role played by the master transcriptional regulator LcrF. In this study, we confirm that LcrQ directly interacts with LcrH, the chaperone of YopD, to facilitate the negative regulatory role of the YopD-LcrH complex in repressing lcrF expression at the posttranscriptional level. Negative regulation is strictly dependent on the YopD-LcrH complex, more so than on LcrQ. The YopD-LcrH complex helps to retain cytoplasmic levels of LcrQ to facilitate the negative regulatory effect. Interestingly, RNase E and its associated protein RhlB participate in this negative regulatory loop through a direct interaction with LcrH and LcrQ. Hence, we present a negative regulatory loop that physically connects LcrQ to the posttranscriptional regulation of LcrF, and this mechanism incorporates RNase E involved in mRNA decay. IMPORTANCE All three human-pathogenic Yesinia species, Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis, employ a plasmid-encoded T3SS to target immunomodulatory effectors into host immune cells. Several plasmid-encoded regulators influence T3SS control, including the master transcriptional activator LcrF, the posttranscriptional repressor YopD, and the unassigned negative regulatory factor LcrQ. Since LcrQ lacks any obvious DNA or RNA binding domains, its regulatory mechanism might be special. In this study, we screened for proteins that directly engaged with LcrQ. We found that LcrQ cooperates with LcrH of the YopD-LcrH complex to aid in the posttranscriptional repression of lcrF expression. This negative-control loop also involved the mRNA decay factor RNase E and its associated RhlB protein, which were recruited to the regulatory complex by both LcrQ and LcrH. Hence, we identify interacting components of LcrQ that shed new light on a mechanism inhibiting T3SS production and biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/genética , Sistemas de Secreção Tipo III/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Sistemas de Secreção Tipo III/metabolismo
5.
BMC Genomics ; 22(1): 235, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823801

RESUMO

BACKGROUND: Hypoxic stress plays a critical role in the persistence of Mycobacterium tuberculosis (Mtb) infection, but the mechanisms underlying this adaptive response remain ill defined. MATERIAL AND METHODS: In this study, using M. marinum as a surrogate, we analyzed hypoxic responses at the transcriptional level by Cappable-seq and regular RNA-seq analyses. RESULTS: A total of 6808 transcriptional start sites (TSSs) were identified under normoxic and hypoxic conditions. Among these TSSs, 1112 were upregulated and 1265 were downregulated in response to hypoxic stress. Using SigE-recognized consensus sequence, we identified 59 SigE-dependent promoters and all were upregulated under hypoxic stress, suggesting an important role for SigE in this process. We also compared the performance of Cappable-seq and regular RNA-seq using the same RNA samples collected from normoxic and hypoxic conditions, and confirmed that Cappable-seq is a valuable approach for global transcriptional regulation analyses. CONCLUSIONS: Our results provide insights and information for further characterization of responses to hypoxia in mycobacteria, and prove that Cappable-seq is a valuable approach for global transcriptional studies in mycobacteria.


Assuntos
Mycobacterium marinum , Humanos , Hipóxia/genética , Mycobacterium marinum/genética , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
6.
FEMS Microbiol Lett ; 368(6)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33705525

RESUMO

LcrF is the master regulator that positively regulates the Ysc type III secretion system (T3SS) in Yersinia and shares a high similarity with the DNA-binding domain of the T3SS master regulator ExsA in Pseudomonas aeruginosa. Based on these features, bioinformatics analysis has predicted a putative LcrF-binding site in its target promoters. Here, we experimentally characterized its binding motif. An adenine-rich LcrF-binding region in the lcrG promoter sequence, a typical regulatory target of LcrF, was first confirmed. To obtain detailed information, this binding region was cloned into a synthetized promoter and mutations in this region were further constructed. We demonstrated that the 5'-AAAAA-n5-GnCT-3' sequence is required for LcrF regulation and this motif is strictly located 4-bp upstream of a noncanonical promoter, in which the -35 and -10 elements are separated by a 21-bp spacer. Consistently, the putative binding motif was found in promoters of nine T3SS related operons or genes positively regulated by LcrF. Transcriptome analysis further confirmed that LcrF specifically activates T3SS genes in Yersinia. Collectively, our data suggest that LcrF has evolved to be a specific T3SS activator with a stringent sequence requirement for transcriptional regulation.


Assuntos
Motivos de Aminoácidos , Proteínas de Bactérias , Transativadores , Motivos de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ligação Proteica , Transativadores/química , Transativadores/metabolismo , Yersinia pseudotuberculosis/química , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo
7.
EMBO J ; 39(14): e104389, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32484956

RESUMO

In bacteria, σ28 is the flagella-specific sigma factor that targets RNA polymerase (RNAP) to control the expression of flagella-related genes involving bacterial motility and chemotaxis. However, the structural mechanism of σ28 -dependent promoter recognition remains uncharacterized. Here, we report cryo-EM structures of E. coli σ28 -dependent transcribing complexes on a complete flagella-specific promoter. These structures reveal how σ28 -RNAP recognizes promoter DNA through strong interactions with the -10 element, but weak contacts with the -35 element, to initiate transcription. In addition, we observed a distinct architecture in which the ß' zinc-binding domain (ZBD) of RNAP stretches out from its canonical position to interact with the upstream non-template strand. Further in vitro and in vivo assays demonstrate that this interaction has the overall effect of facilitating closed-to-open isomerization of the RNAP-promoter complex by compensating for the weak interaction between σ4 and -35 element. This suggests that ZBD relocation may be a general mechanism employed by σ70 family factors to enhance transcription from promoters with weak σ4/-35 element interactions.


Assuntos
Proteínas de Bactérias , DNA Bacteriano , Escherichia coli , Regiões Promotoras Genéticas , Fator sigma , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Domínios Proteicos , Fator sigma/metabolismo , Fator sigma/ultraestrutura
8.
Nat Commun ; 8(1): 2104, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29235472

RESUMO

Histidine kinases are key regulators in the bacterial two-component systems that mediate the cellular response to environmental changes. The vast majority of the sensor histidine kinases belong to the bifunctional HisKA family, displaying both kinase and phosphatase activities toward their substrates. The molecular mechanisms regulating the opposing activities of these enzymes are not well understood. Through a combined NMR and crystallographic study on the histidine kinase HK853 and its response regulator RR468 from Thermotoga maritima, here we report a pH-mediated conformational switch of HK853 that shuts off its phosphatase activity under acidic conditions. Such a pH-sensing mechanism is further demonstrated in the EnvZ-OmpR two-component system from Salmonella enterica in vitro and in vivo, which directly contributes to the bacterial infectivity. Our finding reveals a broadly conserved mechanism that regulates the phosphatase activity of the largest family of bifunctional histidine kinases in response to the change of environmental pH.


Assuntos
Proteínas de Bactérias/química , Histidina Quinase/química , Fosfoproteínas Fosfatases/química , Conformação Proteica , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Histidina Quinase/genética , Histidina Quinase/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Células RAW 264.7 , Salmonella enterica/genética , Salmonella enterica/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...