Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37239388

RESUMO

Autoimmune kidney diseases occur due to the loss of tolerance to self-antigens, resulting in inflammation and pathological damage to the kidneys. This review focuses on the known genetic associations of the major autoimmune kidney diseases that result in the development of glomerulonephritis: lupus nephritis (LN), anti-neutrophil cytoplasmic associated vasculitis (AAV), anti-glomerular basement disease (also known as Goodpasture's disease), IgA nephropathy (IgAN), and membranous nephritis (MN). Genetic associations with an increased risk of disease are not only associated with polymorphisms in the human leukocyte antigen (HLA) II region, which governs underlying processes in the development of autoimmunity, but are also associated with genes regulating inflammation, such as NFkB, IRF4, and FC γ receptors (FCGR). Critical genome-wide association studies are discussed both to reveal similarities in gene polymorphisms between autoimmune kidney diseases and to explicate differential risks in different ethnicities. Lastly, we review the role of neutrophil extracellular traps, critical inducers of inflammation in LN, AAV, and anti-GBM disease, where inefficient clearance due to polymorphisms in DNase I and genes that regulate neutrophil extracellular trap production are associated with autoimmune kidney diseases.


Assuntos
Doença Antimembrana Basal Glomerular , Doenças Autoimunes , Nefropatias , Humanos , Glomérulos Renais/patologia , Estudo de Associação Genômica Ampla , Rim/patologia , Doença Antimembrana Basal Glomerular/patologia , Nefropatias/genética , Nefropatias/patologia , Inflamação/patologia , Código Genético
2.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862222

RESUMO

Although published studies have demonstrated that IFN-ε has a crucial role in regulating protective immunity in the mouse female reproductive tract, expression and regulation of IFN-ε in the human female reproductive tract (hFRT) have not been characterized to our knowledge. We obtained hFRT samples from a well-characterized cohort of women to enable us to comprehensively assess ex vivo IFN-ε expression in the hFRT at various stages of the menstrual cycle. We found that among the various types of IFNs, IFN-ε was uniquely, selectively, and constitutively expressed in the hFRT epithelium. It had distinct expression patterns in the surface and glandular epithelia of the upper hFRT compared with basal layers of the stratified squamous epithelia of the lower hFRT. There was cyclical variation of IFN-ε expression in the endometrial epithelium of the upper hFRT and not in the distal FRT, consistent with selective endometrial expression of the progesterone receptor and regulation of the IFNE promoter by progesterone. Because we showed IFN-ε stimulated important protective IFN-regulated genes in FRT epithelium, this characterization is a key element in understanding the mechanisms of hormonal control of mucosal immunity.


Assuntos
Endométrio , Imunidade Inata , Interferons , Animais , Endométrio/imunologia , Epitélio/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Inata/genética , Interferons/genética , Interferons/metabolismo , Camundongos , Progesterona/metabolismo , Regiões Promotoras Genéticas , Receptores de Progesterona/metabolismo
3.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409152

RESUMO

The first description of a new form of neutrophil cell death distinct from that of apoptosis or necrosis was discovered in 2004 and coined neutrophil extracellular traps "(NETs)" or "NETosis". Different stimuli for NET formation, and pathways that drive neutrophils to commit to NETosis have been elucidated in the years that followed. Critical enzymes required for NET formation have been discovered and targeted therapeutically. NET formation is no longer restricted to neutrophils but has been discovered in other innate cells: macrophages/monocytes, mast Cells, basophils, dendritic cells, and eosinophils. Furthermore, extracellular DNA can also be extruded from both B and T cells. It has become clear that although this mechanism is thought to enhance host defense by ensnaring bacteria within large webs of DNA to increase bactericidal killing capacity, it is also injurious to innocent bystander tissue. Proteases and enzymes released from extracellular traps (ETs), injure epithelial and endothelial cells perpetuating inflammation. In the context of autoimmunity, ETs release over 70 well-known autoantigens. ETs are associated with pathology in multiple diseases: lung diseases, vasculitis, autoimmune kidney diseases, atherosclerosis, rheumatoid arthritis, cancer, and psoriasis. Defining these pathways that drive ET release will provide insight into mechanisms of pathological insult and provide potential therapeutic targets.


Assuntos
Doenças Autoimunes , Armadilhas Extracelulares , Autoimunidade , DNA/metabolismo , Células Endoteliais , Armadilhas Extracelulares/metabolismo , Humanos , Inflamação/patologia , Neutrófilos/metabolismo
4.
J Leukoc Biol ; 108(3): 909-924, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448473

RESUMO

The type I IFNs activate an array of signaling pathways, which are initiated after IFNs bind their cognate receptors, IFNα/ß receptor (IFNAR)1 and IFNAR2. These signals contribute to many aspects of human health including defense against pathogens, cancer immunosurveillance, and regulation of inflammation. How these cytokines interact with their receptors influences the quality of these signals. As such, the integrity of receptor structure is pivotal to maintaining human health and the response to immune stimuli. This review brings together genome wide association studies and clinical reports describing the association of nonsynonymous IFNAR1 and IFNAR2 polymorphisms with clinical disease, including altered susceptibility to viral and bacterial pathogens, autoimmune diseases, cancer, and adverse reactions to live-attenuated vaccines. We describe the amino acid substitutions or truncations induced by these polymorphisms and, using the knowledge of IFNAR conformational changes, IFNAR-IFN interfaces and overall structure-function relationship of the signaling complexes, we hypothesize the effect of these polymorphisms on receptor structure. That these predicted changes to IFNAR structure are associated with clinical manifestations of human disease, highlights the importance of IFNAR structural integrity to maintaining functional quality of these receptor-mediated responses. Type I IFNs are pivotal to innate immune responses and ultimately, to human health. Understanding the consequences of altered structure on the actions of these clinically significant cell receptors provides important information on the roles of IFNARs in health and disease.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptor de Interferon alfa e beta/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Códon sem Sentido/genética , Cristalografia por Raios X , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Imunogenicidade da Vacina , Ligantes , Macrófagos/imunologia , Mamíferos/genética , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Receptor de Interferon alfa e beta/química , Receptor de Interferon alfa e beta/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Relação Estrutura-Atividade , Tuberculose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...