Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1218-1226, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38470457

RESUMO

Water absorption of mid-infrared (MIR) radiation severely limits the options for vibrational spectroscopy of the analytes-including live biological cells-that must be probed in aqueous environments. While internal reflection elements, such as attenuated total reflection prisms and metasurfaces, partially overcome this limitation, such devices have their own limitations: ATR prisms are difficult to integrate with multiwell cell culture workflows, while metasurfaces suffer from a limited spectral range and small penetration depth into analytes. In this work, we introduce an alternative live cell biosensing platform based on metallic nanogratings fabricated on top of elevated dielectric pillars. For the MIR wavelengths that are significantly longer than the grating period, reflection-based spectroscopy enables broadband sensing of the analytes inside the trenches separating the dielectric pillars. Because the depth of the analyte twice-traversed by the MIR light excludes the highly absorbing thick water layer above the grating, we refer to the technique as inverted transflection spectroscopy (ITS). The analytic power of ITS is established by measuring a wide range of protein concentrations in solution, with the limit of detection in the single-digit mg mL-1. The ability of ITS to interrogate live cells that naturally wrap themselves around the grating is used to characterize their adhesion kinetic.


Assuntos
Água , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrofotometria Infravermelho/métodos , Água/química
2.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37786721

RESUMO

Water absorption of mid-infrared (MIR) radiation severely limits the options for vibrational spectroscopy of the analytes - including live biological cells - that must be probed in aqueous environments. While internal reflection elements, such as attenuated total reflection prisms and metasurfaces, partially overcome this limitation, such devices have their own limitations: high cost, incompatibility with standard cell culture workflows, limited spectral range, and small penetration depth into the analyte. In this work, we introduce an alternative live cell biosensing platform based on metallic nanogratings fabricated atop elevated dielectric pillars. For the MIR wavelengths that are significantly longer than the grating period, reflection-based spectroscopy enables broadband sensing of the analytes inside the trenches separating the dielectric pillars. Because the depth of the analyte twice-traversed by the MIR light excludes the highly absorbing thick water layer above the grating, we refer to the technique as Inverted Transflection Spectroscopy (ITS). We demonstrate the analytic power of ITS by measuring protein concentrations in solution. The ability of ITS to interrogate live cells that naturally wrap themselves around the grating is also exploited to characterize their adhesion kinetics.

3.
Lab Chip ; 23(17): 3893, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37492029

RESUMO

Correction for 'Metasurface-enhanced infrared spectroscopy in multiwell format for real-time assaying of live cells' by Steven H. Huang et al., Lab Chip, 2023, 23, 2228-2240, https://doi.org/10.1039/d3lc00017f.

4.
Lab Chip ; 23(9): 2228-2240, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37010356

RESUMO

Fourier transform infrared (FTIR) spectroscopy is a popular technique for the analysis of biological samples, yet its application in characterizing live cells is limited due to the strong attenuation of mid-IR light in water. Special thin flow cells and attenuated total reflection (ATR) FTIR spectroscopy have been used to mitigate this problem, but these techniques are difficult to integrate into a standard cell culture workflow. In this work, we demonstrate that the use of a plasmonic metasurface fabricated on planar substrates and the probing of cellular IR spectra through metasurface-enhanced infrared spectroscopy (MEIRS) can be an effective technique to characterize the IR spectra of live cells in a high-throughput manner. Cells are cultured on metasurfaces integrated with multiwell cell culture chambers and are probed from the bottom using an inverted FTIR micro-spectrometer. To demonstrate the use of MEIRS as a cellular assay, cellular adhesion on metasurfaces with different surface coatings and cellular response to the activation of the protease-activated receptor (PAR) signaling pathway were characterized through the changes in cellular IR spectra.


Assuntos
Técnicas de Cultura de Células , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sobrevivência Celular
5.
Adv Mater ; 35(34): e2110163, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35638248

RESUMO

Infrared spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, noninvasive, and real-time detection, infrared spectroscopy approaches have unlocked a plethora of breakthrough applications for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction. Metasurfaces composed of regular arrangements of such resonators further increase the design space for tailoring this nanoscale light control both spectrally and spatially, which has established them as an invaluable toolkit for surface-enhanced spectroscopy. Starting from the fundamental concepts of metasurface-enhanced infrared spectroscopy, a broad palette of resonator geometries, materials, and arrangements for realizing highly sensitive metadevices is showcased, with a special focus on emerging systems such as phononic and 2D van der Waals materials, and integration with waveguides for lab-on-a-chip devices. Furthermore, advanced sensor functionalities of metasurface-based infrared spectroscopy, including multiresonance, tunability, dielectrophoresis, live cell sensing, and machine-learning-aided analysis are highlighted.

6.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626636

RESUMO

Infrared spectroscopy has drawn considerable interest in biological applications, but the measurement of live cells is impeded by the attenuation of infrared light in water. Metasurface-enhanced infrared reflection spectroscopy (MEIRS) had been shown to mitigate the problem, enhance the cellular infrared signal through surface-enhanced infrared absorption, and encode the cellular vibrational signatures in the reflectance spectrum at the same time. In this study, we used MEIRS to study the dynamic response of live cancer cells to a newly developed chemotherapeutic metal complex with distinct modes of action (MoAs): tricarbonyl rhenium isonitrile polypyridyl (TRIP). MEIRS measurements demonstrated that administering TRIP resulted in long-term (several hours) reduction in protein, lipid, and overall refractive index signals, and in short-term (tens of minutes) increase in these signals, consistent with the induction of endoplasmic reticulum stress. The unique tricarbonyl IR signature of TRIP in the bioorthogonal spectral window was monitored in real time, and was used as an infrared tag to detect the precise drug delivery time that was shown to be closely correlated with the onset of the phenotypic response. These results demonstrate that MEIRS is an effective label-free real-time cellular assay capable of detecting and interpreting the early phenotypic responses of cells to IR-tagged chemotherapeutics.


Assuntos
Complexos de Coordenação , Água , Preparações Farmacêuticas , Espectrofotometria Infravermelho/métodos , Água/química
7.
Lab Chip ; 21(20): 3991-4004, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34474459

RESUMO

Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures - plasmonic metasurfaces - as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells.


Assuntos
Nanoestruturas , Bioensaio , Espectrofotometria Infravermelho
8.
Matter ; 3(2): 371-392, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32835223

RESUMO

Optical whispering-gallery mode (WGM) microresonators, confining resonant photons in a microscale volume for long periods of time, strongly enhance light-matter interactions, making them an ideal platform for photonic sensors. One of the features of WGM sensors is their capability to respond to environmental perturbations that influence the optical mode distribution. The exceptional sensitivity of WGM devices, coupled with the diversity in their structures and the ease of integration with existing infrastructures, such as conventional chip-based technologies, has catalyzed the development of WGM sensors for a broad range of analytes. WGM sensors have been developed for multiplexed detection of clinically relevant biomolecules while also being adapted for the analysis of single-protein interactions. They have been used for the detection of materials in different phases and forms, including gases, liquids, and chemicals. Furthermore, WGM sensors have been used for a wide variety of field-based sensing applications, including electric field, magnetic field, force, pressure, and temperature. WGM sensors hold great potential for applications in life and environmental sciences. They are expected to meet the ever-increasing demand in sensor networks, the Internet of Things, and real-time health monitoring. Here we review the mechanisms, structures, parameters, and recent advances of WGM microsensors and discuss the future of this exciting research field.

9.
Opt Express ; 26(1): 51-62, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328293

RESUMO

Whispering gallery mode (WGM) resonators are compact and ultrasensitive devices, which enable label-free sensing at the single-molecule level. Despite their high sensitivity, WGM resonators have not been thoroughly investigated for use in dynamic biochemical processes including molecular diffusion and polymerization. In this work, the first report of using WGM sensors to continuously monitor a chemical reaction (i.e. gelation) in situ in a hydrogel is described. Specifically, we monitor and quantify the gelation dynamics of polyacrylamide hydrogels using WGM resonators and compare the results to an established measurement method based on rheology. Rheology measures changes in viscoelasticity, while WGM resonators measure changes in refractive index. Different gelation conditions were studied by varying the total monomer concentration and crosslinker concentration of the hydrogel precursor solution, and the resulting similarities and differences in the signal from the WGM resonator and rheology are elucidated. This work demonstrates that WGM alone or in combination with rheology can be used to investigate the gelation dynamics of hydrogels to provide insights into their gelation mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...