Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 12(2): 821-837, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35251919

RESUMO

Acidosis, regardless of hypoxia involvement, is recognized as a chronic and harsh tumor microenvironment (TME) that educates malignant cells to thrive and metastasize. Although overwhelming evidence supports an acidic environment as a driver or ubiquitous hallmark of cancer progression, the unrevealed core mechanisms underlying the direct effect of acidification on tumorigenesis have hindered the discovery of novel therapeutic targets and clinical therapy. Here, chemical-induced and transgenic mouse models for colon, liver and lung cancer were established, respectively. miR-7 and TGF-ß2 expressions were examined in clinical tissues (n = 184). RNA-seq, miRNA-seq, proteomics, biosynthesis analyses and functional studies were performed to validate the mechanisms involved in the acidic TME-induced lung cancer metastasis. Our data show that lung cancer is sensitive to the increased acidification of TME, and acidic TME-induced lung cancer metastasis via inhibition of miR-7-5p. TGF-ß2 is a direct target of miR-7-5p. The reduced expression of miR-7-5p subsequently increases the expression of TGF-ß2 which enhances the metastatic potential of the lung cancer. Indeed, overexpression of miR-7-5p reduces the acidic pH-enhanced lung cancer metastasis. Furthermore, the human lung tumor samples also show a reduced miR-7-5p expression but an elevated level of activated TGF-ß2; the expressions of both miR-7-5p and TGF-ß2 are correlated with patients' survival. We are the first to identify the role of the miR-7/TGF-ß2 axis in acidic pH-enhanced lung cancer metastasis. Our study not only delineates how acidification directly affects tumorigenesis, but also suggests miR-7 is a novel reliable biomarker for acidic TME and a novel therapeutic target for non-small cell lung cancer (NSCLC) treatment. Our study opens an avenue to explore the pH-sensitive subcellular components as novel therapeutic targets for cancer treatment.

2.
Front Pharmacol ; 9: 519, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875661

RESUMO

Lung adenocarcinoma (LAC), predominant subclassfication of lung cancer, leads high incidence and mortality annually worldwide. During the premalignant transition from lung adenomas to LAC, cellular senescence is regard as a critical physiological barrier against tumor progression. Nevertheless, the role of senescence in tumorigenesis is controversial and few senescence inducers are extensively determined. In this study, we used two classical cell lines A549 and H1299 and two NSCLC xenograft models on Balb/c-nude mice to reveal the pro-senescence effects of shikonin and the corresponding underlying mechanism in LAC. Shikonin, a pure compound isolated from the herbal medicine Lithospermum erythrorhizon, remarkably stimulated cellular senescence including increased SAHF formation, enlarged cellular morphology, and induced SA-ß-Gal positive staining. Further mechanism study revealed that the pro-senescence effect of shikonin was dependent on the increased intercellular ROS generation, which subsequently triggered DNA damage-p53/p21waf axis without activating oncogenes such as Ras and MEK-1. Meanwhile, Kdm2b, an H3K36me2-specific demethylase effectively suppressed ROS generation, was also notably suppressed by shikonin treatment. Moreover, shikonin at 10 mg/kg significantly inhibited tumor weights by 55.84% and 50.98% in A549 and H1299 xenograft model, respectively (P < 0.05) through activating cellular senescence. Our study suggested that shikonin, a ROS-dependent senescence inducer, could serve as a promising agent for further lung cancer treatment.

3.
Front Pharmacol ; 9: 434, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765324

RESUMO

Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...