Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Biomed J ; : 100720, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679198

RESUMO

BACKGROUND: Pulmonary fibrosis is a progressive diffuse parenchymal lung disorder with a high mortality rate. Studies have indicated that injured lung tissues release various pro-inflammatory factors, and produce a large amount of nitric oxide. There is also accumulation of collagen and oxidative stress-induced injury, collectively leading to pulmonary fibrosis. Antrodia cinnamomea is an endemic fungal growth in Taiwan, and its fermented extracts exert anti-inflammatory effects to alleviate liver damages. Hence, we hypothesized and tested the feasibility of using A. cinnamomea extracts for treatment of pulmonary fibrosis. METHODS: The TGF-ß1-induced human lung fibroblast cells (MRC-5) in vitro cell assay were used to evaluate the effects of A. cinnamomea extracts on the collagen production in MRC-5. Eight-week-old ICR mice were intratracheally administered bleomycin and then fed with an A. cinnamomea extract on day 3 post-administration of bleomycin. At day 21 post-bleomycin administration, the pulmonary functional test, the expression level of inflammation- and fibrosis-related genes in the lung tissue, and the histopathological change were examined. RESULTS: The A. cinnamomea extract significantly attenuated the expression level of collagen in the TGF-ß1-induced MRC-5 cells. In the A. cinnamome-treated bleomycin-induced lung fibrotic mice, the bodyweight increased, pulmonary functions improved, the lung tissues expression level of inflammatory factor and the fibrotic indicator were decreased, and the histopathological results showed the reduction of thickening of the inter-alveolar septa. CONCLUSIONS: The Antrodia cinnamomea extract significant protects mice against bleomycin-induced lung injuries through improvement of body weight gain and lung functions, and attenuation of expression of inflammatory and fibrotic indicators.

2.
J Nutr Biochem ; 123: 109485, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844766

RESUMO

Myricetin, a flavonoid isolated from many edible vegetables and fruits, has multiple biological effects, including anti-inflammatory and anti-tumor effects. Myricetin could inhibit mast cell degranulation in vitro, and it reduced the eosinophil content in bronchoalveolar lavage fluid (BALF) of ovalbumin (OVA)-sensitized mice. However, it remains unclear whether myricetin alleviates airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthma. Here, we investigated whether myricetin attenuated AHR, airway inflammation, and eosinophil infiltration in lungs of asthmatic mice. Mice were sensitized with OVA, then injected intraperitoneally with myricetin to investigate anti-inflammatory and antioxidant effects of myricetin. Moreover, we examined its effects on human bronchial epithelial BEAS-2B cells stimulated with TNF-α and IL-4, in vitro. Myricetin effectively mitigated eosinophil infiltration, AHR, and goblet cell hyperplasia in lung, and it reduced Th2 cytokine expression in BALF from asthmatic mice. Myricetin effectively promoted glutathione and superoxide dismutase productions and mitigated malondialdehyde expressions in mice by promoting Nrf2/HO-1 expression. Myricetin also reduced the production of proinflammatory cytokines, eotaxins, and reactive oxygen species in BEAS-2B cells. Myricetin effectively suppressed ICAM-1 expression in inflammatory BEAS-2B cells, which suppressed monocyte cell adherence. These results suggested that myricetin could effectively improve asthma symptoms, mainly through blocking Th2-cell activation, which reduced oxidative stress, AHR, and airway inflammation.


Assuntos
Asma , Humanos , Animais , Camundongos , Ovalbumina/toxicidade , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Pulmão , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
3.
Antioxidants (Basel) ; 12(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38136188

RESUMO

Osteoarthritis (OA) is a progressive disease that causes pain, stiffness, and inflammation in the affected joints. Currently, there are no effective treatments for preventing the worst outcomes, such as synovitis or cartilage degradation. Sarcodia montagneana and Corbicula fluminea are common species found in the ocean or in freshwater areas. Their extracts are demonstrated to possess both antioxidative and anti-inflammatory functions. This study aimed to investigate the synergistic effects of the extracts of Sarcodia montagneana (SME) and Corbicula fluminea (FCE) on reducing local and systemic inflammation, as well as their efficacy in OA symptom relief. An in vitro monocytic LPS-treated THP-1 cell model and in vivo MIA-induced mouse OA model were applied, and the results showed that the combinatory usage of SME and FCE effectively suppressed IFN-γ and TNF-α production when THP-1 cells were treated with LPS. SME and FCE also significantly decreased the systemic TNF-α level and joint swelling and prevented the loss of proteoglycan in the cartilage within the joints of OA mice. The data shown here provide a potential solution for the treatment of osteoarthritis.

5.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298555

RESUMO

E7050 is an inhibitor of VEGFR2 with anti-tumor activity; however, its therapeutic mechanism remains incompletely understood. In the present study, we aim to evaluate the anti-angiogenic activity of E7050 in vitro and in vivo and define the underlying molecular mechanism. It was observed that treatment with E7050 markedly inhibited proliferation, migration, and capillary-like tube formation in cultured human umbilical vein endothelial cells (HUVECs). E7050 exposure in the chick embryo chorioallantoic membrane (CAM) also reduced the amount of neovessel formation in chick embryos. To understand the molecular basis, E7050 was found to suppress the phosphorylation of VEGFR2 and its downstream signaling pathway components, including PLCγ1, FAK, Src, Akt, JNK, and p38 MAPK in VEGF-stimulated HUVECs. Moreover, E7050 suppressed the phosphorylation of VEGFR2, FAK, Src, Akt, JNK, and p38 MAPK in HUVECs exposed to MES-SA/Dx5 cells-derived conditioned medium (CM). The multidrug-resistant human uterine sarcoma xenograft study revealed that E7050 significantly attenuated the growth of MES-SA/Dx5 tumor xenografts, which was associated with inhibition of tumor angiogenesis. E7050 treatment also decreased the expression of CD31 and p-VEGFR2 in MES-SA/Dx5 tumor tissue sections in comparison with the vehicle control. Collectively, E7050 may serve as a potential agent for the treatment of cancer and angiogenesis-related disorders.


Assuntos
Sarcoma , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Embrião de Galinha , Humanos , Inibidores da Angiogênese/uso terapêutico , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcoma/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Expert Opin Drug Deliv ; 20(6): 757-772, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088710

RESUMO

INTRODUCTION: RNA interference (RNAi) has demonstrated great potential in treating skin-related diseases, as small interfering RNA (siRNA) can efficiently silence specific genes. The design of skin delivery systems for siRNA is important to protect the nucleic acid while facilitating both skin targeting and cellular ingestion. Entrapment of siRNA into nanocarriers can accomplish these aims, contributing to improved targeting, controlled release, and increased transfection. AREAS COVERED: The siRNA-based nanotherapeutics for treating skin disorders are summarized. First, the mechanisms of RNAi are presented, followed by the introduction of challenges for skin therapy. Then, the different nanoparticle types used for siRNA skin delivery are described. Subsequently, we introduce the mechanisms of how nanoparticles enhance siRNA skin penetration. Finally, the current investigations associated with nanoparticulate siRNA application in skin disease management are reviewed. EXPERT OPINION: The potential application of nanotherapeutic RNAi allows for a novel skin application strategy. Further clinical studies are required to confirm the findings in the cell-based or animal experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for translation to commercialization. siRNA delivery by nanocarriers should be optimized to attain cutaneous targeting without the risk of toxicity.


Assuntos
Nanopartículas , Dermatopatias , Animais , RNA Interferente Pequeno , Reprodutibilidade dos Testes , Interferência de RNA , Dermatopatias/tratamento farmacológico , Transfecção
7.
Pathogens ; 12(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839613

RESUMO

Platelet hyper-reactivity and neutrophil extracellular trap (NET) formation contribute to the development of thromboembolic diseases for patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study investigated the pathophysiological effects of SARS-CoV-2 surface protein components and the viral double-stranded RNA (dsRNA) on platelet aggregation and NET formation. Traditional Chinese medicine (TCM) with anti-viral effects was also delineated. The treatment of human washed platelets with SARS-CoV-2 spike protein S1 or the ectodomain S1 + S2 regions neither caused platelet aggregation nor enhanced agonists-stimulated platelet aggregation. Moreover, NET formation can be induced by polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analog of viral dsRNA, but not by the pseudovirus composed of SARS-CoV-2 spike, envelope, and membrane proteins. To search for TCM with anti-NET activity, the plant Melastoma malabathricum L. which has anticoagulant activity was partially purified by fractionation. One of the fractions inhibited poly(I:C)-induced NET formation in a dose-dependent manner. This study implicates that SARS-CoV-2 structural proteins alone are not sufficient to promote NET and platelet activation. Instead, dsRNA formed during viral replication stimulates NET formation. This study also sheds new insight into using the active components of Melastoma malabathricum L. with anti-NET activity in the battle of thromboembolic diseases associated with SARS-CoV-2 infection.

8.
Int J Infect Dis ; 128: 257-264, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642207

RESUMO

OBJECTIVES: This study explored the outcomes and predictors of early viral clearance among patients with COVID-19. METHODS: This study recruited consecutive patients from March 1, 2020 to July 31, 2021. Early viral clearance was defined as having a duration from symptom onset to successive detection of SARS-CoV-2 polymerase chain reaction cycle threshold (Ct) value of ≥30 within 10 days. RESULTS: Among the 239 enrolled patients, 54.4% (130 patients) had early viral clearance. A multivariate logistic regression analysis identified that dexamethasone use and day 1 Ct values were independent factors associated with late viral clearance. Patients with mild-moderate severity and who received dexamethasone therapy had a longer time to viral clearance than those who did not receive dexamethasone (17.2 ± 1.8 days vs 12.3 ± 1.1 days, P = 0.018). Patients with severe-critical severity had a similar duration from symptom onset to Ct value ≥30, regardless of dexamethasone therapy (18.3 ± 0.9 days vs 16.7 ± 4.7 days, P = 0.626). CONCLUSION: The study revealed that dexamethasone therapy and Ct values are independent predictors of late viral clearance. Patients with severe disease course due to older age, increased number of comorbidities, and worse clinical outcomes experienced delayed viral clearance.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Dexametasona , Estudos de Coortes
9.
Biomed J ; 46(1): 100-109, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414180

RESUMO

BACKGROUND: Reliable clinical and laboratory predictors of coronavirus disease 2019 (COVID-19) disease progression could help to identify the subset of patients who are susceptible to severe symptoms. This study sought to identify the predictors for disease progression in patients with COVID-19. METHODS: This study recruited consecutive patients from four hospitals between March 1, 2020, and July 31, 2021. Demographic characteristics, laboratory results, and clinical outcomes were collected. RESULTS: Among the 239 enrolled patients, 39.3% (94/239) experienced in-hospital disease progression. Multivariate logistic regression revealed that coronary arterial disease (CAD) (OR, 4.15; 95% C.I., 1.47-11.66), cerebrovascular attack (CVA) (OR, 12.98; 95% C.I., 1.30-129.51), platelet count < median value (OR, 3.23; 95% C.I., 1.65-6.32), and C-reactive protein (CRP) levels > median value of (OR, 2.25; 95% C.I., 1.02-4.99) were independent factors associated with COVID-19 progression. Patients who underwent disease progression at days 1, 4, and 7 presented lower lymphocyte counts and higher CRP levels, compared to patients without disease progression. CONCLUSIONS: The study revealed that in hospitalized COVID-19 patients, comorbidity with CAD and CVA, low platelet count, and elevated CRP levels were independently associated with disease progression. Compared with patients without disease progression, those with disease progression presented persistently low lymphocyte counts and elevated CRP levels.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Progressão da Doença , Proteína C-Reativa/análise , Estudos de Coortes , Estudos Retrospectivos
10.
Int J Med Sci ; 19(13): 1912-1919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438919

RESUMO

Objective: Direct comparison of the clinical traits of coronavirus disease 2019 (COVID-19) in strain D614G, which originated from Wuhan, China, and the Alpha variant, which contains 17 mutations, infected patients could help physicians distinguish between strains and make clinical decisions accordingly. This study sought to compare the clinical characteristics and outcomes of the D614G strain and Alpha variant of SARS-COV-2 and identify the predictors for viral RNA clearance and in-hospital mortality in patients with COVID-19. Methods: This study recruited consecutive patients from four hospitals between March 1, 2020, and July 31, 2021. Demographic characteristics, laboratory results, and clinical outcomes were determined. Results: Among the 239 enrolled patients, 11.2% (27/239) were infected with strain D614G and 88.7% (212/239) were infected with the Alpha variant. There were no significant differences in disease progression, rate of respiratory failure, subsequent development of acute respiratory distress syndrome (ARDS), acute kidney injury, cardiac injury, duration of stay in the intensive care unit or hospital, discharge rate, mortality rate, or viral RNA clearance time between the two groups. Multivariate Cox regression revealed that antibiotic therapy reduced the risk of delayed viral RNA clearance (hazard ratio [HR], 0.26; 95% confidence interval [CI], 0.13-0.55), while autoimmune disease increased the risk of delayed viral RNA clearance (HR, 3.98; 95% CI, 1.21-13.04). Elderly patients (age > 65 years) and patients with a history of cerebrovascular accident (CVA) were at increased risk of in-hospital mortality (HR, 5.14; 95% CI, 1.06-24.72 and HR, 3.62; 95% CI, 1.25-10.42, respectively). Conclusions: There were no significant differences between the D614G strain and Alpha variant of COVID-19 in terms of clinical characteristics and outcomes. However, factors affecting viral RNA clearance and the risk of in-hospital mortality were identified. These results could help to inform the future prioritization of resource allocation and identify patients in need of intense monitoring.


Assuntos
COVID-19 , Humanos , Idoso , RNA Viral/genética , Taiwan/epidemiologia , SARS-CoV-2/genética , Estudos de Coortes
11.
Front Pharmacol ; 13: 997100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267283

RESUMO

2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-Glucoside (THSG) is the main active ingredient extracted from Polygonum multiflorum Thunb. (PMT), which has been reported to possess extensive pharmacological properties. Nevertheless, the exact role of THSG in pulmonary fibrosis has not been demonstrated yet. The main purpose of this study was to investigate the protective effect of THSG against bleomycin (BLM)-induced lung fibrosis in a murine model, and explore the underlying mechanisms of THSG in transforming growth factor-beta 1 (TGF-ß1)-induced fibrogenesis using MRC-5 human lung fibroblast cells. We found that THSG significantly attenuated lung injury by reducing fibrosis and extracellular matrix deposition. THSG treatment significantly downregulated the expression levels of TGF-ß1, fibronectin, α-SMA, CTGF, and TGFBR2, however, upregulated the expression levels of antioxidants (SOD-1 and catalase) and LC3B in the lungs of BLM-treated mice. THSG treatment decreased the expression levels of fibronectin, α-SMA, and CTGF in TGF-ß1-stimulated MRC-5 cells. Conversely, THSG increased the expression levels of SOD-1 and catalase. Furthermore, treatment of THSG profoundly reduced the TGF-ß1-induced generation of reactive oxygen species (ROS). In addition, THSG restored TGF-ß1-induced impaired autophagy, accompany by increasing the protein levels of LC3B-II and Beclin 1. Mechanism study indicated that THSG significantly reduced TGF-ß1-induced increase of TGFBR2 expression and phosphorylation of Smad2/3, Akt, mTOR, and ERK1/2 in MRC-5 cells. These findings suggest that THSG may be considered as an anti-fibrotic drug for the treatment of pulmonary fibrosis.

12.
Int J Pharm ; 627: 122162, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36122617

RESUMO

Retinoic acid (RA) is an approved treatment for skin photoaging induced by ultraviolet (UVA). Topically applied RA is mainly located in the stratum corneum (SC) with limited diffusion into the deeper strata. A delivery system capable of facilitating dermal delivery and cellular internalization for RA is critical for a successful photoaging therapy. Two delivery approaches, namely nanoparticles and laser ablation, were combined to improve RA's absorption efficacy and safety. The nanoparticle absorption enhancement by the lasers was compared between full-ablative (Er:YAG) and fractional (CO2) modalities. We fabricated poly-L-lactic acid (PLA) and PLA/poly(lactic-co-glycolic acid) (PLGA) nanoparticles by an emulsion-solvent evaporation technique. The mean size of PLA and PLA/PLGA nanocarriers was 237 and 222 nm, respectively. The RA encapsulation percentage in both nanosystems was > 96 %. PLA and PLA/PLGA nanocarriers promoted RA skin deposition by 5- and 3-fold compared to free control. The ablative lasers further enhanced the skin deposition of RA-loaded nanoparticles, with the full-ablative laser showing greater permeation enhancement than the fractional mode. The skin biodistribution assay evaluated by confocal and fluorescence microscopies demonstrated that the laser-assisted nanoparticle delivery achieved a significant dermis and follicular accumulation. The cell-based study indicated a facile uptake of the nanoparticles into the human dermal fibroblasts. The nanoparticulate RA increased type I collagen and elastin production in the UVA-treated fibroblasts. A reduction of matrix metalloproteinase (MMP)-1 was also highlighted in the photoaging cells. The calculation of therapeutic index (TI) by multiplying collagen/elastin elevation percentage and skin deposition predicted better anti-photoaging performance in Er:YAG laser-assisted nanoparticle delivery than CO2 laser. Nanoencapsulation of RA decreased the cytotoxicity against skin fibroblasts. In vivo skin tolerance test on a nude mouse showed less skin damage after topical application of the nanoparticles than free RA. Our results hypothesized that the laser-mediated nanoparticle delivery provided an efficient and safe use for treating photoaging.


Assuntos
Lasers de Estado Sólido , Nanopartículas , Dermatopatias , Camundongos , Animais , Humanos , Absorção Cutânea , Elastina/metabolismo , Tretinoína , Administração Cutânea , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Colágeno Tipo I/metabolismo , Distribuição Tecidual , Emulsões/metabolismo , Dióxido de Carbono/metabolismo , Pele/metabolismo , Dermatopatias/metabolismo , Camundongos Nus , Solventes/metabolismo , Metaloproteinases da Matriz/metabolismo
13.
Biomed Pharmacother ; 154: 113605, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030588

RESUMO

The current study evaluated the protective role of Solanum torvum Swartz against diabetes-induced oxidative stress and tissue impairment in streptozotocin (STZ)-intoxicated rats. Rats with STZ (40 mg/kg intraperitoneally (i.p.))-induced diabetes were divided into five groups (n = 5) and treated with (i) normal saline, (ii) 150 mg/kg body weight (BW) of the ethanol extract of S. torvum leaf (EESTL), (ii) 300 mg/kg BW EESTL, (iv) 100 mg/kg BW metformin, and (v) 50 m/kg BW metformin + 100 mg/kg BW EESTL orally for 21 days. Our results revealed that the EESTL displayed dose-dependent ferric-reducing antioxidant power (FRAP) activity, scavenged DPPH radicals (IC50) = 13.52 ± 0.45 µg/mL), and inhibited lipid peroxidation in an in vitro models. In addition, the EESTL demonstrated dose-dependent inhibitory activity against α-amylase (IC50 =138.46 ± 3.97 µg/mL) and promoted glucose uptake across plasma membranes of yeast cells in a manner comparable to that of metformin. Interestingly, the extract demonstrated in vivo blood glucose normalization effects with concomitant increased activities of antioxidant parameters (superoxide dismutase (SOD), catalase, and reduced glutathione (GSH)) while decreasing malondialdehyde (MDA) levels when compared to untreated rats. Similarly, serum biochemical alterations, and tissues (liver, kidney, and pancreases) histopathological aberrations in untreated rats with STZ-induced diabetes were attenuated by treatment with the EESTL. Biometabolite characterization of the extract identified gallic acid (45.81 ppm), catechin (1.18 ppm), p-coumaric acid (1.43e-1 ppm), DL-proline 5-oxo-methyl ester (9.16 %, retention time (RT): 8.57 min), salicylic acid (3.26% and 7.61 min), and butylated hydroxytoluene (4.75%, RT: 10.18 min) as the major polyphenolic compounds in the plant extract. In conclusion, our study provides preclinical evidence of the antioxidant properties and oxidative stress-preventing role of S. torvum in STZ-dosed diabetic rats. Taken together, the EESTL represents a reserve of bioactive metabolites for managing diabetes and associated complications.


Assuntos
Diabetes Mellitus Experimental , Metformina , Solanum , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Metformina/farmacologia , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Ratos , Estreptozocina/farmacologia
14.
Antioxidants (Basel) ; 11(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35624699

RESUMO

In Taiwan, the root extract of Vitis thunbergii Sieb. et Zucc. (Vitaceae, VT) is rich in stilbenes, with resveratrol (Res) and its derivatives being the most abundant. Previously, we showed that the effect of Res derivatives against tumor necrosis factor-α (TNF-α)-stimulated inflammatory responses occurs via cPLA2/COX-2/PGE2 inhibition. This study compared and explored the underlying anti-inflammatory pharmacological mechanisms. Before stimulation with TNF-α, RMCs were treated with/without pharmacological inhibitors of specific protein kinases. The expression of inflammatory mediators was determined by Western blotting, gelatin zymography, real-time PCR, and luciferase assay. Cellular and mitochondrial ROS were measured by H2DHFDA or DHE and MitoSOX™ Red staining, respectively. The RNS level was indirectly measured by Griess reagent assay. Kinase activation and association were assayed by immunoprecipitation followed by Western blotting. TNF-α binding to TNFR recruited Rac1 and p47phox, thus activating the NAPDH oxidase-dependent MAPK and NF-κB pathways. The TNF-α-induced NF-κB activation via c-Src-driven ROS was independent from the EGFR signaling pathway. The anti-inflammatory effects of Res derivatives occurred via the inhibition of ROS derived from mitochondria and NADPH oxidase; RNS derived from iNOS; and the activation of the ERK1/2, JNK1/2, and NF-κB pathways. Overall, this study provides an understanding of the various activities of Res derivatives and their pharmacological mechanisms. In the future, the application of the active molecules of VT to health foods and medicine in Taiwan may increase.

15.
Mar Drugs ; 20(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35447934

RESUMO

Freshwater clam extract (FCE) is a functional food that regulates the immune system and has been demonstrated in numerous studies to display desirable anti-tumor necrosis factor-alpha (TNF-α) responses. In addition, excess TNF-α production is positively associated with type 2 diabetes. However, few longitudinal clinical studies evaluating the efficiency and toxicity of FCE are available. This article reports that patients with prediabetes who received FCE had a desirable outcome of a reduction in serum TNF-α for a long period. This was a double-blind, randomized, parallel clinical trial conducted using FCE intervention and placebo groups, and 36 patients with prediabetes were enrolled. Two grams of FCE or placebo was consumed daily for 180 consecutive days. The serum of the participants was collected at four time points (0M: before the intervention; 3M: after 3 months of intervention; 6M: after 6 months of intervention; 12M: 6 months after cessation of intervention at 6M). A serum TNF-α concentration higher than 4.05 pg/mL was defined as a cut-off value. FCE reduced serum TNF-α in all participants at 6M and 12M. Moreover, FCE significantly suppressed serum TNF-α concentrations at 6M and 12M and inhibited TNF-α release with time series in subjects with elevated TNF-α values. FCE intervention effectively reduced serum TNF-α and persistently sustained the effects for half a year in patients with prediabetes. Gas chromatography-mass spectrometry (GS-MS) analysis revealed that the major components of FCE were phytosterols and fatty acids, which exerted anti-inflammatory and anti-TNF-α abilities. Hence, FCE has the potential to be developed as a natural treatment for prediabetic patients in Taiwan.


Assuntos
Corbicula , Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Animais , Corbicula/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Água Doce , Humanos , Extratos Vegetais , Estado Pré-Diabético/tratamento farmacológico , Taiwan , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa
16.
J Sci Food Agric ; 102(2): 716-723, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34171123

RESUMO

BACKGROUND: The prevalence of diabetes mellitus worldwide has increased in recent decades. Maintaining the level of blood glucose is the most basic and important issue for diabetics. This study aimed to investigate the hypoglycemic activity of a combination of hypoglycemic peptide-enriched hydrolysates of Corbicula fluminea (ACH) and Chlorella sorokiniana (PCH). RESULTS: Combined supplementation of ACH and PCH synergistically inhibited α-glucosidase and DPP4 activities in vitro. After 4 weeks of treatment with ACH and/or PCH, the plasma glucose concentration and insulin, homeostasis model assessment-estimated insulin resistance (HOMA-IR), total cholesterol (TC) and triglyceride (TG) levels significantly decreased. The hypoglycemic peptides in ACH and PCH were purified and assayed for α-glucosidase and DPP4 activity. The hypoglycemic peptides in ACH and PCH effectively decreased α-glucosidase and DPP4 activities. In silico assays showed that these two peptide types have different docking poses, which determined their inhibitory effect against α-glucosidase and DPP4 activity. CONCLUSION: Combined treatment with hypoglycemic peptide-enriched ACH and PCH could modulate blood glucose by synergistically inhibiting α-glucosidase and DPP4 activities. © 2021 Society of Chemical Industry.


Assuntos
Chlorella/química , Corbicula/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores de Glicosídeo Hidrolases/administração & dosagem , Hipoglicemiantes/administração & dosagem , Peptídeos/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Sinergismo Farmacológico , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hipoglicemiantes/química , Masculino , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
17.
Phytomedicine ; 95: 153797, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34802869

RESUMO

BACKGROUND: Despite advances in chemotherapies and targeted drugs, colorectal cancer (CRC) remains challenging to treat due to drug resistance. Emerging evidence indicates that cancer-associated fibroblasts (CAFs) facilitate the generation of cancer stem-like cells (CSCs) and drug resistance. Glycogen synthase kinase-3 (GSK) associated signaling pathways have been implicated in the generation of CSCs and represent a target for therapeutics development. HYPOTHESIS: Gamma-mangostin (gMG) isolated from Garcinia mangostana was evaluated for its ability to downregulate GSK3ß-associated signaling in CRC cells and overcome CAF-induced 5-fluorouracil resistance and CSC generation. METHODS: Bioinformatics analysis, in silico molecular docking, in vitro assays, including cell viability tests, colony- and tumor sphere-formation assays, transwell migration assays, ELISA, SDS-PAGE, Western blotting, miR expression, qPCR, and flow cytometry, as well as in vivo mouse xenograft models were used to evaluate the antitumor effects of gMG. RESULTS: Bioinformatics analyses indicated that GSK3ß/CDK6/ß-catenin mRNA signature was significantly higher in colon cancer patients. Additional algorithms predicted a higher miR-26b level was associated with significantly higher survival in CRC patients and GSK3ß and CDK6 as targets of miR-26b-5p. To validate these findings in vitro, we showed that CAF-cocultured CRC cells expressed an increased expression of GSK3ß, ß-catenin, CDK6, and NF-κB. Therapeutically, we demonstrated that gMG treatment suppressed GSK3ß-associated signaling pathways while concomitantly increased the miR-26b-5p level. Using a xenograft mouse model of CAFs cocultured HCT116 tumorspheres, we showed that gMG treatment reduced tumor growth and overcame CAF-induced 5-fluorouracil resistance. CONCLUSIONS: Pharmacological intervention with gMG suppressed CRC carcinogenesis and stemness via downregulating GSK3/ß-catenin/CDK6 and upregulating the miR-26b-5p tumor suppressor. Thus, gMG represents a potential new CRC therapeutic agent and warrants further investigation.


Assuntos
Neoplasias Colorretais , Garcinia mangostana , MicroRNAs , Xantonas/farmacologia , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Colo/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Quinase 6 Dependente de Ciclina , Garcinia mangostana/química , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , MicroRNAs/genética , Simulação de Acoplamento Molecular , Via de Sinalização Wnt , beta Catenina/metabolismo
18.
Biomed Pharmacother ; 146: 112497, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34891117

RESUMO

Rhubarb as an herbal medicine has been shown to exhibit antiadipogenic activity. This study evaluated and compared the lipid-lowering activity of five rhubarb hydroxyanthraquinones (HAQs), including chrysophanol, aloe emodin, emodin, physcion, and rhein, aiming to identify candidate compounds for obesity treatment. Examination of the antiobesity effects of HAQs in 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese rats showed that these anthraquinone compounds inhibited lipid accumulation in 3T3-L1 cells before and after differentiation. Emodin and rhein showed greater inhibition than the other compounds; dosage at 50 µM reduced intracellular triglyceride (TG) by about 30% in the differentiated adipocytes. Both compounds also revealed lipolytic effects to increase glycerol release from adipocytes. Adipokine overexpression induced by differentiation was downregulated by emodin and rhein through mitogen-activated protein kinase (MAPK) signaling. Despite their structural similarity, emodin and rhein exhibited different mechanisms on adipogenesis and lipid metabolism. Rhein restrained lipid deposition by controlling adipogenic transcriptional factors and lipolytic lipases during differentiation. The lipid-lowering effects of emodin did not use these pathways but reduced levels of lipogenic enzymes. HFD consumption in rats significantly increased body weight, visceral fat mass and adipocyte size, which were attenuated by intraperitoneal delivery of emodin or rhein. Rhein showed greater amelioration of obesity than emodin, decreasing plasma cholesterol by 29% and 14%, respectively. HAQs also suppressed cytokine upregulation in the liver and adipose tissues of obese rats. Rhein is a potential antiobesity agent through its ability to regulate obesity-associated adipogenesis, lipolysis and inflammation.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Antraquinonas/farmacologia , Fármacos Antiobesidade/farmacologia , Rheum/química , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Emodina/farmacologia , Glicerol/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Regulação para Cima
19.
Biomed Pharmacother ; 145: 112482, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34915669

RESUMO

The anthraquinones derived from rhubarb are reported to have anti-inflammatory activity. The present study aimed to assess the topical application of rhubarb anthraquinone aglycones for psoriasis treatment. The antipsoriatic effect of five anthraquinones, including aloe-emodin, rhein, emodin, physcion, and chrysophanol, was compared to elucidate a structure-permeation relationship. Molecular modeling was employed to determine the physicochemical properties. Both macrophages (differentiated THP-1) and keratinocytes (HaCaT) were used to examine the anti-inflammatory activity in the cell-based study. The in vitro pig skin absorption showed that chrysophanol was the compound with the highest cutaneous accumulation. Topically applied rhein was detected to be largely delivered to the receptor compartment. The absorption of rhein was increased by 5-fold in the barrier-deficient skin as compared to intact skin. By stimulating macrophages with imiquimod (IMQ) to model the inflammation in psoriasis, it was found that the anthraquinones significantly reduced IL-6, IL-23, and TNF. The cytokine inhibition level was comparable for the five compounds. The anthraquinones suppressed cytokines by inhibiting the activation of MAPK and NF-κB signaling. The anthraquinones also downregulated IL-6, IL-8, and IL-24 in the inflammatory keratinocytes stimulated with TNF. Rhein and chrysophanol were comparable to curtail the STAT3 phosphorylation in keratinocytes induced by the conditioned medium of stimulated macrophages. The IMQ-induced psoriasiform mouse model demonstrated the improvement of scaling, erythema, and epidermal hyperplasia by topically applied rhein or chrysophanol. The epidermal acanthosis evoked by IMQ was reduced with rhein and chrysophanol by 3-fold. The histological profiles exhibit that both anthraquinone compounds diminished the number of macrophages and neutrophils in the lesional skin, skin-draining lymph node, and spleen. Rhein and chrysophanol showed multifunctional inhibition, by regulating several targets for alleviating psoriasiform inflammation.


Assuntos
Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Psoríase/tratamento farmacológico , Rheum/química , Administração Tópica , Animais , Antraquinonas/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Emodina/análogos & derivados , Emodina/farmacologia , Células HaCaT , Humanos , Imiquimode/farmacologia , Inflamação/tratamento farmacológico , Queratinócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Psoríase/metabolismo , Absorção Cutânea , Suínos
20.
Curr Issues Mol Biol ; 43(3): 1828-1843, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34889901

RESUMO

Insulin resistance (IR) is a villain role to the pathology of fatty liver diseases implicated in adipose tissue dysfunction, which is characterized by lipid droplets (LDs) accumulation and hypoxia-inducible factor 1α (HIF1α) related macrophage infiltration. HIF1α is required for its lipogenic actions in adipocytes, while and it regulates M1 and M2 polarization features of macrophages. Losartan has been shown to be an insulin sensitizer in obese states, actions involving in HIF1α signaling. However, the exact mechanisms accounting for these effects have not been fully elucidated. Therefore, GTT, ITT, and HOMA-IR were identified losartan alleviated IR signaling in obese mice. This alleviation may through inhibits HIF1α by suppressing STAT3-NF-κB signaling, which, in turn, revealed HIF1α-dependent decreases the angiogenesis pathway in adipose tissue, including regulation of VEGF and TGFßR2 levels. In white adipose tissue, a set of lipogenesis-related genes, Srebp1, Fas, and Scd-1 were markedly downregulated after losartan intervention, as well as reduced LDs size and LD-associated proteins, perilipin family proteins (PLINs) compared with obese mice. Losartan abolished macrophage infiltration with upregulation of M2 and inhibition of M1 macrophage markers in obese mice. Our data suggest that losartan attenuated obese-induced fatty liver, linked to alleviating inflammation in adipose tissues and a shift in M1/M2 macrophage balance. Furthermore, losartan might improve mitochondria biogenesis by upregulating SIRT1, PGC1α, UCP1, and mRNA of Tfam, Cd137, Tmem26, Ucp1 expression in white adipose tissue compared with the obese group. Taken together, losartan may improve IR and adipose dysfunction by inhibiting lipotoxicity and HIF1α pathways.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Resistência à Insulina , Losartan/farmacologia , Animais , Glucose/metabolismo , Intolerância à Glucose/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo dos Lipídeos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Obesos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...