Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Food Res Int ; 165: 112568, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869551

RESUMO

People suffered from insufficient or disrupted sleep due to night shifts, work pressure, and irregular lifestyles. Sleep deprivation caused by inadequate quantity or quality of sleep has been associated with not only increased risk of metabolic diseases, gut dysbiosis, and emotional disorders but also decreased work and exercise performance. In this study, we used the modified multiple platform method (MMPM) to induce pathological and psychological characteristics of sleep deprivation with C57BL/6J male mice, and investigated whether supplementing a prebiotics mixture of short-chain galactooligosaccharides (scGOS) and long-chain fructooligosaccharides (lcFOS) (9:1 ratio) could improve the impacts of sleep deprivation on intestinal physiology, neuropsychological function, inflammation, circadian rhythm, and exercise capacity. Results showed that sleep deprivation caused intestinal inflammation (increased TNFA and IL1B) and decreased intestinal permeability with a significant decrease in the tight junction genes (OCLN, CLDN1, TJP1, and TJP2) of intestine and brain. The prebiotics significantly increased the content of metabolite short-chain fatty acids (acetate and butyrate) while recovering the expression of indicated tight junction genes. In hypothalamus and hippocampus, clock (BMAL1 and CLOCK) and tight junction (OCLN and TJP2) genes were improved by prebiotics, and corticotropin-releasing hormone receptor genes, CRF1 and CRF2, were also significantly regulated for mitigation of depression and anxiety caused by sleep deprivation. Also, prebiotics brought significant benefits on blood sugar homeostasis and improvement of exercise performance. Functional prebiotics could improve physiological modulation, neuropsychological behaviors, and exercise performance caused by sleep deprivation, possibly through regulation of inflammation and circadian rhythm for health maintenance. However, the microbiota affected by prebiotics and sleep deprivation should warrant further investigation.


Assuntos
Tolerância ao Exercício , Privação do Sono , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Encéfalo , Homeostase
3.
Nutrients ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615906

RESUMO

Eccentric contraction can easily cause muscle damage and an inflammatory response, which reduces the efficiency of muscle contraction. Resveratrol causes anti-inflammatory effects in muscles, accelerates muscle repair, and promotes exercise performance after contusion recovery. However, whether resveratrol provides the same benefits for sports injuries caused by eccentric contraction is unknown. Thus, we explored the effects of resveratrol on inflammation and energy metabolism. In this study, mice were divided into four groups: a control group, an exercise group (EX), an exercise with low-dose resveratrol group (EX + RES25), and an exercise with high-dose resveratrol group (EX + RES150). The results of an exhaustion test showed that the time before exhaustion of the EX + RES150 group was greater than that of the EX group. Tumour necrosis factor-α (Tnfα) mRNA expression was lower in the EX + RES150 group than in the EX group. The energy utilisation of the EX + RES150 group was greater than that of the EX + RES25 group in different muscles. High-dose resveratrol intervention decreased Tnfα mRNA expression and enhanced the mRNA expressions of sirtuin 1, glucose transporter 4, AMP-activated protein kinase α1, and AMP-activated protein kinase α2 in muscles. These results revealed that high-dose resveratrol supplementation can reduce inflammation and oxidation and improve energy utilisation during short-duration high-intensity exercise.


Assuntos
Músculo Esquelético , Miosite , Camundongos , Animais , Resveratrol/farmacologia , Resveratrol/metabolismo , Músculo Esquelético/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Miosite/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Contração Muscular/fisiologia , RNA Mensageiro/metabolismo
4.
Microbiol Res ; 268: 127292, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608535

RESUMO

Acute sleep deprivation (ASD) is often observed in shift workers and characterized by drowsiness and unrelenting exhaustion. The physiological and psychological effects of ASD include anxiety, depression, cognitive impairment, systemic inflammation, stress responses, and disruptions of gut microbiota. However, the mechanisms involved in the ASD-associated circadian dysregulations with regard to gut dysbiosis, systemic inflammation, physiological modulation, and psychiatry disorders remain unclear. The aim of this study was to investigate whether central nervous system disorders induced by ASD are related to inflammation, barrier dysfunction, and circadian dysregulation. We also assessed impacts on microbiota succession. Male C57BL/6 mice were randomly allocated to the control and sleep deprivation (SD) groups. Mice in the SD group were subjected to 72 h of paradoxical SD using the modified multiple-platform method for ASD induction (72 h rapid eye movement-SD). The effects of ASD on dietary consumption, behaviors, cytokines, microbiota, and functional genes were determined. The appetite of the SD group was significantly higher than that of the control group, but the body weight was significantly lower than that of the control group. The anxiety-like behaviors were found in the SD group. Alpha and beta diversity of microbiota showed significant decrease after ASD induction; the relative abundance of Candidatus_Arthromitus and Enterobacter was increased, whereas that abundance of Lactobacillus, Muribaculum, Monoglobus, Parasutterella, and others was decreased in the SD group. These effects were accompanied by reduction in fecal propionic acid. In the proximal colon, the SD group exhibited significantly higher inflammation (tumor necrosis factor-α [TNF-α]) and dysregulation of the circadian rhythms (brain and muscle ARNT-like 1 [BMAL1] and cryptochrome circadian regulator 1 [CRY1]) and tight junction genes (occludin [OCLN]) than the control group. Gut barrier dysfunction slightly increased the plasma concentration of lipopolysaccharide and significantly elevated TNF-α. Inflammatory signals might be transduced through the brain via TNF receptor superfamily member 1 A (TNFRSF1A), which significantly increased the levels of microglia activation marker (ionized calcium-binding adapter molecule 1 [IBA1]) and chemokine (intercellular adhesion molecule 1 [ICAM1]) in the cerebral cortex. The serotonin receptor (5-hydroxytryptamine 1A receptor [5-HT1AR]) was significantly downregulated in the hippocampus. In summary, 72 h of rapid eye movement-SD induced physiological and psychological stress, which led to disruption of the circadian rhythms and gut microbiota dysbiosis; these effects were related to decrement of short chain fatty acids, gut inflammation, and hyperpermeability. The microbiota may be utilized as preventive and therapeutic strategies for ASD from the perspectives of medicine and nutrition.


Assuntos
Microbioma Gastrointestinal , Psiquiatria , Animais , Masculino , Camundongos , Ritmo Circadiano , Disbiose , Inflamação , Camundongos Endogâmicos C57BL , Privação do Sono , Fator de Necrose Tumoral alfa
5.
J Sports Sci Med ; 21(4): 595-607, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36523895

RESUMO

Dysmenorrhea with high prevalence has been categorized as primary dysmenorrhea (PD) and secondary dysmenorrhea due to differences in pathogenesis. A significant number of reproductive females suffering from monthly menstruation have to deal with negative impacts on their quality of life, work/study productivity, activities, and social relationships. In addition to medical treatment, exercise has been recognized as a complementary and alternative strategy for disease prevention, alleviation, and rehabilitation. This study aimed to investigate the potential effects of exercise on the severity of primary dysmenorrhea, physiological modulation, and physical fitness. Participants consisted of university students who were enrolled in the study and divided into a non-PD (Control) and a PD group based on recruiting criteria, the latter being randomly assigned to either an untreated dysmenorrhea group or a dysmenorrhea group that underwent 10 weeks of high intensity interval training (HIIT) exercise (Dysmen and DysmenHIIT, respectively). The DysmenHIIT group used spinning bikes and the training intensity was validated by heart rate monitors and BORG rating of perceived exertion. Forms containing participant information (premenstrual symptoms, menstrual distress, and a Short Form McGill Pain Questionnaire) as well as physical fitness, biochemical variables, hormone and prostaglandin (PGE2 and PGF2α) levels were assessed before and after the exercise intervention. After intervention, premenstrual symptoms (anger, anxiety, depression, activity level, fatigue, etc.), menstrual distress symptoms (cramps, aches, swelling, etc.), and pain severity were shown to be significantly mitigated, possibly through hormone (estradiol, prolactin, progesterone, and cortisol) modulation. Furthermore, high-sensitivity C-reactive protein (HsCRP), PGE2 and PGF2α levels were also down-regulated, resulting in the amelioration of uterine contraction and inflammation. Participants' physical fitness, including cardiovascular endurance and explosive force, was significantly improved after HIIT. The 10-week HIIT spinning bike exercise used in this study could be employed as a potential and complementary treatment for PD symptoms alleviation and considered as part of an educational health plan for promoting women's health. However, the effects of HIIT utilizing different exercise methods and accounting for different age populations and secondary PD warrant further investigation.


Assuntos
Ciclismo , Dismenorreia , Humanos , Feminino , Dismenorreia/terapia , Qualidade de Vida , Dinoprosta , Dinoprostona , Aptidão Física , Hormônios , Inflamação
6.
Artigo em Inglês | MEDLINE | ID: mdl-36498231

RESUMO

Background: The aging society worldwide carries public and inevitable issues. Aging is accompanied by multiple diseases, and the health impacts challenge healthcare and social systems. In addition to medical treatment, exercise has been recognized as an effective strategy not only for disease prevention and alleviation, but also for multiple health benefits on health promotion. The purpose of this study was to investigate the effects of a suitable Pilates exercise intervention program on health maintenance and benefits in community-dwelling middle-aged women with a quasi-experimental design. Methods: We recruited healthy middle-aged community-dwelling women who had not regularly exercised in the previous three months. The participants were assigned to the experimental (n = 22) and control (n = 23) groups based on a quasi-experimental design. The experimental group participated in a mat-based Pilates exercise class twice a week (1 h/session) throughout the 12-week intervention, whereas there was no intervention for the control group. Body composition, basal metabolic rate, and functional physical fitness­comprising cardiovascular capacity, flexibility, muscular strength of upper limbs, muscular strength of lower limbs, core strength, agility, static balance, and dynamic balance­were assessed as primary outcomes in both groups before and after the intervention. Results: There were no significant differences in any of the dependent variables between the two groups before the exercise intervention. After the 12-week intervention, body composition, including body mass index, body fat (−1.5 to 3%), and basal metabolic rate (+10.6%), and functional fitness, including flexibility (+3.5%), core strength (+31.5%), lower-limb strength (+13.5%), agility (+7.3%), and balance (+4.2%), improved significantly in the experimental group relative to the control group (p < 0.05). Moreover, the improvement in physical fitness in lower-limb strength, agility, and balance for fall prevention also demonstrated higher clinical significance than the control. Conclusions: This 12-week mat-based Pilates exercise program significantly improved body composition, basal metabolic rate, and functional physical fitness in community-dwelling middle-aged women. The beneficial effects of Pilates exercise programs may thus promote improved health in the middle-aged female population, with practical implications for communities.


Assuntos
Técnicas de Exercício e de Movimento , Vida Independente , Pessoa de Meia-Idade , Humanos , Feminino , Equilíbrio Postural , Metabolismo Basal , Aptidão Física
7.
Front Nutr ; 9: 915483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795589

RESUMO

Background: Osteoporosis and immune-associated disorders are highly prevalent among menopausal women, and diet control and exercise exert beneficial effects on physiological modulation in this population. A controlled diet with a low fat content and a balanced caloric intake improves menopausal health, but the health effects of excessive fructose consumption on menopausal women are yet to be confirmed. In addition, whole-body vibration (WBV), a safe passive-training method, has been shown to have multiple beneficial effects on metabolism regulation, obesity, and bone health. Methods: The ovariectomized (OVX) C57BL/6J model was used to verify the effects of WBV combined with a high-fructose diet (HFrD) for 16 weeks on physiological modulation and immune responses. The mice were randomly allocated to sham, OVX, OVX+HFrD, and OVX+HFrD+WBV groups, which were administered with the indicated ovariectomy, dietary and WBV training treatments. We conducted growth, dietary intake, glucose homeostasis, body composition, immunity, inflammation, histopathology, and osteoporotic assessments (primary outcomes). Results: Our results showed that the isocaloric HFrD in OVX mice negated estrogen-deficiency-associated obesity, but that risk factors such as total cholesterol, glucose intolerance, osteoporosis, and liver steatosis still contributed to the development of metabolic diseases. Immune homeostasis in the OVX mice was also negatively affected by the HFrD diet, via the comprehensive stimulation of T cell activation, causing inflammation. The WBV intervention combined with the HFrD model significantly ameliorated weight gain, glucose intolerance, total cholesterol, and inflammatory cytokines (interferon gamma [IFN-γ], interleukin [IL]-17, and IL-4) in the OVX mice, although osteoporosis and liver steatosis were not affected compared to the negative control group. These findings indicate that an isocaloric high-fructose diet alone may not result in menopausal obesity, but that some deleterious physiological impacts still exist. Conclusion: The WBV method may modulate the physiological impacts of menopause and the HFrD diet, and should be considered as an alternative exercise prescription for people with poor compliance or who are unable or unwilling to use traditional methods to improve their health. In future studies, using the WBV method as a preventive or therapeutic strategy, combined with nutritional interventions, medication, and other exercise prescriptions, may prove beneficial for maintaining health in menopausal women.

8.
Sci Rep ; 12(1): 3612, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256637

RESUMO

The World Health Organization determined cardiovascular disease to be the leading cause of death globally; atherosclerosis is the primary cause of the high morbidity and mortality rates. Regular physical activity is an effective strategy for maintaining endothelial health and function to prevent the development of atherosclerosis. Obesity is also a crucial risk factor for atherosclerotic progression in combination with various complications and systemic inflammation. Physiological homeostasis is modulated by the intestinal microbiota, but the mechanisms through which exercise attenuates atherosclerosis through the microbiota have not been elucidated. Therefore, we investigated the effects of endurance exercise on atherosclerosis induced by a Western diet (WD) and apolipoprotein E (ApoE) knockout in terms of microbiota parameters and metabolites. Genetically modified ApoE knockout mice (C57BL/6-Apoeem1Narl/Narl, ApoEKO) and wild-type mice (C57BL6/J) were divided into the following four groups (n = 6), namely, wild-type mice fed a chow diet (WT CD), ApoEKO mice fed a chow diet (ApoE CD), ApoEKO mice fed a WD (ApoE WD), and ApoEKO mice fed a WD and performing endurance exercise (ApoE WD EX), for a 12-week intervention. The WD significantly induced obesity and atherosclerotic syndrome in the ApoE WD group. Severe atherosclerotic lesions and arterial thickness were significantly elevated and accompanied by increases in VCAM-1, MCP-1, TNF-α, and IL-1ß for immune cell chemotaxis and inflammation during atherosclerotic pathogenesis in the ApoE WD group. In addition, dysbiosis in the ApoE WD group resulted in the lowest short-chain fatty acid (SCFA) production. Endurance exercise intervention (ApoE WD EX) significantly alleviated atherosclerotic syndrome by reducing obesity, significantly inhibiting VCAM-1, MCP-1, TNF-α, and IL-1ß expression, and increasing the production of SCFAs. Modulation of the microbiota associated with inflammation, such as Desulfovibrio, Tyzzerella, and Lachnospiraceae_ge, and increased SCFA production, particularly through an abundance of Rikenellaceae and Dubosiella, were also observed after exercise intervention. Endurance exercise can alleviate WD-induced atherosclerosis through the amelioration of obesity, inflammation, and chemotaxis signaling, which are modulated by the microbiota and derived SCFAs.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Terapia por Exercício/efeitos adversos , Ácidos Graxos Voláteis , Humanos , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular
9.
Nutr Metab (Lond) ; 19(1): 10, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172845

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), which is growing more common in the Western world, has become the main cause of chronic liver disease and is strongly associated with metabolism syndromes. NAFLD can indicate a wide spectrum of hepatic pathologies, ranging from simple hepatic steatosis and inflammatory non-alcoholic steatohepatitis to more severe stages of fibrosis and cirrhosis. Moreover, evidence has demonstrated that physical inactivity and westernized dietary habits may facilitate the development of NAFLD. Lipid modulation and metabolism could be important factors in the development of steatosis. Lipid species, characterized using a lipidomic approach with untargeted analysis, could provide potential biomarkers for the pathogenesis of NAFLD or therapeutic applications. Thus, in this study, the effects of exercise on the improvement of NAFLD were further investigated from a lipidomic perspective through the aspects of lipid regulation and metabolism. METHODS: Wild type (WT) C57BL/6 J and C57BL/6-ApoEem1Narl/Narl mice were assigned to one of four groups: WT mice fed a normal chow diet (CD), apolipoprotein E (ApoE) knockout mice fed a normal CD, ApoE knockout mice fed a high-fat diet (HFD), and ApoE knockout mice fed a HFD and provided with swimming exercise. The treatments (e.g., normal diet, HFD, and exercise) were provided for 12 consecutive weeks before the growth curves, biochemistry, fat composition, pathological syndromes, and lipid profiles were determined. RESULTS: Exercise significantly reduced the HFD-induced obesity (weight and fat composition), adipocyte hypertrophy, liver lipid accumulation, and pathological steatosis. In addition, exercise ameliorated HFD-induced steatosis in the process of NAFLD. The lipidomic analysis revealed that the changes in plasma triglyceride (14:0/16:0/22:2), phosphatidic acid (18:0/17:2), and phosphatidylglycerol (16:0/20:2) induced by the administration of the HFD could be reversed significantly by exercise. CONCLUSIONS: The 12-week regular exercise intervention significantly alleviated HFD-induced NAFLD through modulation of specific lipid species in plasma. This finding could elucidate the lipids effects behind the hepatic pathogenesis with exercise.

10.
Biology (Basel) ; 11(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35205118

RESUMO

Atherosclerosis is the preliminary cause of coronary artery disease, one of the diseases that account for the largest number of fatal mortalities. Physical activity is an effective strategy to restrain atherosclerosis from deterioration. Evidence indicated that changes in the proteomic profile are highly associated with atherosclerosis development, but the mechanism behind exercise for atherosclerosis amelioration has not yet been investigated from a proteomics perspective. Hence, the proteomic profiles could further elucidate the systematic effects of exercise intervention on ApoE knockout atherosclerotic model and high-fat-diet intervention. In the current study, Apoeem1Narl/Narl mice were randomly allocated into a normal diet (ND), Western diet (WD), and WD with 12-week exercise intervention (WD EX) groups. The plasma proteome between WD and WD EX groups demonstrate the significant difference, and ten major pathways, including cardiovascular disease (CVD)-hematological disease, inflammatory disease, infectious diseases, inflammatory response, cell-to-cell signaling and interaction, connective tissue disorders_inflammatory disease, metabolic disease_organismal injury and abnormalities, cell-to-cell signaling and interaction, connective tissue disorders_inflammatory disease, and endocrine system disorders_gastrointestinal disease, etc., were generated by the IPA analysis. The 15 proteins (MYOCD, PROS1, C2, SERPINA10, CRP, F5, C5, CFB, FGG, CFH, F12, PRDX2, PROZ, PPIA, and HABP2) critically involved in CVD-hematological disease pathway showed significant difference between WD and WD EX groups. In current study, exercise could significantly alleviate the significantly elevated C5 and inflammation induced by the WD group in accordance with amelioration of atherosclerosis. Therefore, exercise could mitigate chemotaxis through the modulation of the C5 level and innate immunity, thereby alleviating the pathogenesis of atherosclerosis in Western-diet-induced obese mice.

11.
Biology (Basel) ; 10(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200732

RESUMO

Overtraining in athletes usually causes profound and lasting deleterious effects on the maintenance of health and exercise capacity. Here, we established an overtraining animal model to investigate the physiological modulation for future strategic applications in vivo. We subjected C57BL/6 mice to exhaustive treadmill exercises daily for 8 weeks (the exhaustive exercise group). Next, the physiological and psychological outcomes were compared with the regular exercise and sedentary groups. Outcome measures included growth, glucose tolerance, exercise metabolism profiles, cytokine levels, intestinal tight junction gene expression, and psychological behavioral changes. Our results revealed that overtraining negatively affected the physiological and psychological changes in the current model. The exhaustive exercise group exhibited significantly lower endurance performance and imbalanced energy expenditure, causing a decrease in body fat mass and slowing down the growth curve. In addition, the inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, and interleukin-1ß) and immune cells (neutrophils and monocytes) were significantly elevated after successive exhaustive exercise interventions. Furthermore, overtraining-induced stress resulted in increased anxiety status and decreased food intake. Our findings reinforce the idea that an imbalance between exercise and recovery can impair health and performance maintenance after overtraining. This study highlights the maladaptation of overtraining and provides an animal model to determine the effectiveness of possible strategies, including nutrition and monitoring, for treatment and prevention of overtraining syndromes in future studies.

12.
Obes Facts ; 14(3): 306-319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34077946

RESUMO

INTRODUCTION: Obesity, which can result from disease, genetics, nutrition, lifestyle, and insufficient physical activity, substantially increases an individual's risk of complications and comorbidities. Exercise can be an effective strategy for achieving an energy balance and physiological fitness as part of obesity management. Additionally, probiotics, which are isolated from food and the environment, are being rapidly developed and have functional benefits for mitigating various metabolic dysfunctions associated with obesity. The potentially positive physiological and functional effects of exercise, probiotics, and exercise combined with probiotics should be elucidated in a model of diet-induced obesity. METHODS: Bifidobacterium longum subsp. longum OLP-01 (OLP-01) was isolated from an elite Olympic-level athlete who exhibited physiological adaptations to peripheral fatigue caused by exercise training. In this current study, ICR strain mice were fed a high-fat diet (HFD) for 4 weeks to replicate an obesity model. The mice were divided into 5 groups according to the diet administered: control with normal diet, only HFD, HFD + exercise, HFD + OLP, and HFD + exercise + OLP groups. They were administered the probiotic and/or treadmill exercise training for 5 weeks, and their growth curve, physical activity, physiological adaptation, biochemical parameters, body composition, and glucose tolerance were assessed. RESULTS: Compared with only exercise or only probiotics, a combination of probiotics and exercise significantly improved the weight, glucose tolerance, fat composition, and exercise-related oxidative stress of mice. Regular and programmed exercise with sufficient rest may be crucial to obesity improvement, and a combination of probiotics and exercise may synergistically assist obesity management and health promotion. CONCLUSION: OLP-01 probiotics combined with exercise training can be employed as a strategy for treating obesity. However, the exact regulatory mechanisms underlying this effect, possibly involving microbiota and associated metabolites, warrant further investigation.


Assuntos
Bifidobacterium longum , Probióticos , Animais , Bifidobacterium , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos ICR , Obesidade/etiologia , Obesidade/terapia
13.
Hum Exp Toxicol ; 40(4): 622-633, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32924602

RESUMO

Bacteroides fragilis (BF) plays a critical role in developing and maintaining the mammalian immune system. We previously found that BF colonization could prevent inflammation and tumor formation in a germ-free (GF) colitis-associated colorectal cancer (CAC) mouse model. The role of Toll-like receptor 4 (TLR4) in CAC development has not been clearly elucidated in BF mono-colonized gnotobiotic mice. The wild-type (WT) and TLR4 knockout (T4K) germ-free mice were raised with or without BF colonization for 28 days (GF/WT, GF/T4K, BF/WT, and BF/T4K) and then CAC was induced under azoxymethane (AOM)/dextran sulfate sodium (DSS) administration. The results showed that tumor formation and tumor incidence were significantly inhibited in the BF/WT group compared to those observed in the GF/WT group. However, the tumor prevention effect was not observed in the BF/T4K group unlike in the BF/WT group. Moreover, the CAC histological severity of the BF/WT group was ameliorated, but more severe lesions were found in the GF/WT, GF/T4K, and BF/T4K groups. Immunohistochemistry showed decreased cell proliferation (PCNA, ß-catenin) and inflammatory markers (iNOS) in the BF/WT group compared to those in the BF/T4K group. Taken together, BF mono-colonization of GF mice might prevent CAC via the TLR4 signal pathway.


Assuntos
Bacteroides fragilis , Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Receptor 4 Toll-Like/genética , Animais , Azoximetano , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/patologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Vida Livre de Germes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , beta Catenina/metabolismo
14.
Nutrients ; 12(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752178

RESUMO

A triathlon is an extremely high-intensity exercise and a challenge for physiological adaptation. A triathlete's microbiome might be modulated by diet, age, medical treatments, lifestyle, and exercise, thereby maintaining aerobiosis and optimum health and performance. Probiotics, prebiotics, and synbiotics have been reported to have health-promoting activities (e.g., immunoregulation and cancer prevention). However, few studies have addressed how probiotics affect the microbiota of athletes and how this translates into functional activities. In our previous study, we found that Lactobacillus plantarum PS128 could ameliorate inflammation and oxidative stress, with improved exercise performance. Thus, here we investigate how the microbiota of triathletes are altered by L. plantarum PS128 supplementation, not only for exercise performance but also for possible physiological adaptation. The triathletes were assigned to two groups: an L. plantarum 128 supplement group (LG, 3 × 1010 colony-forming units (CFU)/day) and a placebo group (PG). Both groups continued with their regular exercise training for the next 4 weeks. The endurance performance, body composition, biochemistries, blood cells, microbiota, and associated metabolites were further investigated. PS128 significantly increased the athletes' endurance, by about 130% as compared to the PG group, but there was no significant difference in maximal oxygen consumption (VO2max) and composition between groups. The PS128 supplementation (LG) modulated the athlete's microbiota with both significant decreases (Anaerotruncus, Caproiciproducens, Coprobacillus, Desulfovibrio, Dielma, Family_XIII, Holdemania, and Oxalobacter) and increases (Akkermansia, Bifidobacterium, Butyricimonas, and Lactobacillus), and the LG showed lower diversity when compared to the PG. Also, the short-chain fatty acids (SCFAs; acetate, propionate, and butyrate) of the LG were significantly higher than the PG, which might be a result of a modulation of the associated microbiota. In conclusion, PS128 supplementation was associated with an improvement on endurance running performance through microbiota modulation and related metabolites, but not in maximal oxygen uptake.


Assuntos
Adaptação Fisiológica/fisiologia , Microbioma Gastrointestinal/fisiologia , Lactobacillus plantarum/metabolismo , Adulto , Bifidobacterium , Composição Corporal , Dieta , Exercício Físico , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Humanos , Inflamação , Lactobacillus , Estresse Oxidativo , Consumo de Oxigênio , Prebióticos , Probióticos , Corrida , Adulto Jovem
15.
Nutrients ; 12(4)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325851

RESUMO

Probiotics exert multiple health benefits, including gastrointestinal health, immunoregulation, and metabolic disease improvement, by modulating microbiota to maintain eubiosis via the hypothalamic-pituitary-adrenal (HPA) and brain-gut-microbiome axes. Physiological fatigue, mental stress, and gastrointestinal discomfort under the demands of athletic performance as well as immunosuppression are common during endurance training and competition. Limited studies investigated the functional effects of probiotic supplementation on endurance training. Bifidobacterium longum subsp. Longum OLP-01 (OLP-01), isolated from an elite Olympic athlete, was combined with a six-week exercise training program with gradually increasing intensity. In this study, Institute of Cancer Research (ICR) mice were assigned to sedentary, exercise, OLP-01, or exercise + OLP-01 groups and administered probiotic and/or treadmill exercise training for six weeks to assess exercise performance, physiological adaption, and related metabolites. The exercise + OLP-01 group demonstrated higher performance in terms of endurance and grip strength, as well as improved fatigue-associated indexes (lactate, ammonia, creatine kinase (CK), lactate dehydrogenase (LDH), and glycogen content), compared with the other groups. OLP-01 supplementation significantly ameliorated inflammation and injury indexes (platelet/lymphocyte ratio (PLR), aminotransferase (AST), and CK) caused by prolonged endurance exercise test. Moreover, acetate, propionate, and butyrate levels were significantly higher in the exercise + OLP-01 group than in the sedentary and OLP-01 groups. Athletes often experience psychological and physiological stress caused by programed intensive exercise, competition, and off-site training, often leading to poor exercise performance and gastrointestinal issues. Functional OLP-01 probiotics are considered to be a nutritional strategy for improving physiological adaption, oxidative stress, inflammation, and energy balance to ensure high physical performance. Based on these results, probiotics combined with exercise training is a potential strategy for ensuring high physical performance of athletes, which should be further investigated through microbiota validation.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Bifidobacterium , Suplementos Nutricionais , Exercício Físico/fisiologia , Condicionamento Físico Animal/fisiologia , Desempenho Físico Funcional , Probióticos/administração & dosagem , Probióticos/farmacologia , Animais , Desempenho Atlético , Metabolismo Energético/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos ICR
16.
Antioxidants (Basel) ; 9(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326004

RESUMO

Low-osmolality carbohydrate-electrolyte solution (LCS) ingestion can replace losses from exercise-induced dehydration, but the benefits of LCS ingestion strategy after exhaustive endurance exercise (EEE) remain unknown. The present study evaluated the effects of LCS ingestion on dehydration, oxidative stress, renal function, and aerobic capacity after EEE. In our study with its double-blind, crossover, counterbalanced design, 12 healthy male participants were asked to consume LCS (150 mL four times per hour) or placebo (water) 1 h before and 1 h after EEE. All participants completed a graded exercise test to exhaustion on a treadmill for the determination of maximal oxygen consumption (VO2max), applied to further intensity calibration, and then completed the EEE test. The average heart rate, maximal heart rate, running time to exhaustion, and peak oxygen uptake (VO2peak) were recorded during the exercise period. The participants' body weight was recorded at different time points before and after the EEE to calculate the dehydration rate. Blood samples were drawn at baseline and before, immediately after, 1 h after, and 2 h after EEE to determine indicators of oxidative stress and renal function. The results indicated that the dehydration rates in participants with LCS ingestion at 15 min, 30 min, and 45 min after EEE were significantly lower than in participants with placebo ingestion (-1.86 ± 0.47% vs. -2.24 ± 0.72%; -1.78 ± 0.50% vs. -2.13 ± 0.74%; -1.54 ± 0.51% vs. -1.94 ± 0.72%, respectively; p < 0.05). In addition, the concentration of catalase in participants with LCS ingestion immediately after EEE was significantly higher than in participants with placebo ingestion (2046.21 ± 381.98 nmol/min/mL vs. 1820.37 ± 417.35 nmol/min/mL; p < 0.05). Moreover, the concentration of protein carbonyl in participants with LCS ingestion immediately after EEE was slightly lower than in participants with placebo ingestion (2.72 ± 0.31 nmol carbonyl/mg protein vs. 2.89 ± 0.43 nmol carbonyl/mg protein; p = 0.06). No differences were noted for other variables. Our findings conclude that LCS ingestion can effectively avoid fluid loss and oxidative stress after EEE. However, LCS ingestion had no benefits for renal function or aerobic capacity.

17.
Molecules ; 25(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316255

RESUMO

Moderate to severe psoriasis, an immune-mediated inflammatory disease, adversely affects patients' lives. Cyclosporin A (CsA), an effective immunomodulator, is used to treat psoriasis. CsA is ineffective at low doses and toxic at high doses. Acarbose (Acar), a common antidiabetic drug with anti-inflammatory and immunomodulatory effects, reduces imiquimod (IMQ)-induced psoriasis severity. Combinations of systemic drugs are generally more efficacious and safer than higher doses of single drugs. We observed that mice treated with a combination of Acar (250 mg/kg) and low-dose CsA (10 or 20 mg/kg) exhibited significantly milder IMQ-induced psoriasis-like dermatitis and smoother back skin than those treated with Acar (250 mg/kg), low-dose CsA (10 or 20 mg/kg), or IMQ alone. The combination therapy significantly reduced serum and skin levels of Th17-related cytokines (interleukin (IL)-17A, IL-22, and IL-23) and the Th1-related cytokine tumor necrosis factor-α (TNF-α) compared with Acar, low-dose CsA, and IMQ alone. Additionally, the combination therapy significantly reduced the percentages of IL-17- and IL-22-producing CD4+ T-cells (Th17 and Th22 cells, respectively) and increased that of Treg cells. Our data suggested that Acar and low-dose CsA in combination alleviates psoriatic skin lesions by inhibiting inflammation. The findings provide new insights into the effects of immunomodulatory drugs in psoriasis treatment.


Assuntos
Acarbose/efeitos adversos , Anti-Inflamatórios/administração & dosagem , Ciclosporina/efeitos adversos , Imiquimode/efeitos adversos , Psoríase/tratamento farmacológico , Acarbose/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Ciclosporina/farmacologia , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Psoríase/induzido quimicamente , Psoríase/imunologia , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/metabolismo
18.
J Nutr Biochem ; 79: 108362, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32163832

RESUMO

Diet-induced obesity is the most widely used animal model for studying nonalcoholic fatty liver disease (NAFLD). However, the physiological effects of a high-fat diet (HFD) are inconsistent between different studies. To elucidate this mystery, mice raised with conventional (CONV), specific pathogen-free (SPF) and gentamicin (G) treatments and fed with standard diet (STD) or HFD were analyzed in terms of their physiology, gut microbiota composition, hepatic steatosis and inflammation. Serum biochemistry showed increased levels of cholesterol and aspartate aminotransferase in the G-STD and CONV-HFD groups, respectively. The CONV-HFD group exhibited more inflammatory foci compared to the SPF-HFD and G-HFD groups. Furthermore, immunohistochemistry staining revealed the infiltration of Kupffer cells in the liver, consistent with increased mRNA levels of MCP-1, CD36 and TLR4. Principal coordinate analysis and the cladogram of LEfSe showed that the distinguished clusters of gut microbiota were dependent on housing conditions. The Rikenellaceae, F16 and Desulfovibrionaceae were strongly correlated with hepatic inflammation. Otherwise, higher NAFLD activity score correlated with altered relative abundances of Bacteroidetes and Firmicutes. In conclusion, gut microbiota varying with housing condition may be pivotal for the host response to HFD.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Abrigo para Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Aspartato Aminotransferases/sangue , Bacteroidetes , Colesterol/sangue , Modelos Animais de Doenças , Firmicutes , Inflamação/metabolismo , Células de Kupffer/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Obesidade/metabolismo , Obesidade/patologia , Organismos Livres de Patógenos Específicos
19.
Chin J Physiol ; 63(1): 35-42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32056985

RESUMO

Complementary and alternative medicines (CAMs) are widely applied and accepted for therapeutic purposes because of their numerous benefits. Negative ion treatment belongs to one of the critical categories defined by the National Center for CAM, with such treatment capable of air purification and ameliorating emotional disorders (e.g., depression and seasonal affective disorder). Negative ions can be produced naturally and also by a material with activated energy. Exercise-induced muscle damage (EIMD) often occurs due to inadequate warm up, high-intensity exercise, overload, and inappropriate posture, especially for high-intensive competition. Few studies have investigated the effects of negative ion treatment on muscular injury in the sports science field. In the current study, we enrolled badminton athletes and induced muscle damage in them through eccentric exercise in the form of a high-intensity squat program. We evaluated the effects of negative ion patches of different intensities at three points (preexercise, postexercise, and recovery) by analyzing physiological indexes (tumor necrosis factor [TNF]-α, interleukin [IL]-6, IL-10, creatine kinase [CK], and lactate dehydrogenase [LDH] levels) and performing a functional assessment (a countermovement jump [CMJ] test). We found that a high-intensity negative ion patch could significantly reduce the levels of TNF-α, an injury-associated inflammatory cytokine, and related markers (CK and LDH). In addition, muscular overload-caused fatigue could be also ameliorated, as indicated by the functional CMJ test result, and related muscular characteristics (tone and stiffness) could be effectively improved. Thus, the negative ion treatment could effectively improve physiological adaption and muscular fatigue recovery after EIMD in the current study. The negative ion patch treatment can be further integrated into a taping system to synergistically fulfill exercise-induced damage protection and functional elevation. However, the effects of this treatment require further experimental validation.


Assuntos
Músculo Esquelético , Esportes com Raquete , Atletas , Humanos , Inflamação , Íons
20.
Int J Med Sci ; 16(12): 1549-1556, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839742

RESUMO

Spinal cord injury (SCI) can cause loss of mobility in the limbs, and no drugs, surgical procedures, or rehabilitation strategies provide a complete cure. Exercise capacity is thought to be associated with the causes of many diseases. However, no studies to date have assessed whether congenital exercise ability is related to the recovery of spinal cord injury. High congenital exercise ability (HE) and low congenital exercise ability (LE) mice were artificially bred from the same founder ICR mice. The HE and LE groups still exhibited differences in exercise ability after 13 generations of breeding. Histological staining and immunohistochemistry staining indicated no significant differences between the HE and LE groups on recovery of the spinal cord. In contrast, after SCI, the HE group exhibited better mobility in gait analysis and longer endurance times in the exhaustive swimming test than the LE group. In addition, after SCI, the HE group also exhibited less atrophy than the LE group, and no inflammatory cells appeared. In conclusion, we found that high congenital exercise ability may reduce the rate of muscle atrophy. This result can be applied to sports science and rehabilitation science as a reference for preventive medicine research.


Assuntos
Atrofia Muscular/terapia , Condicionamento Físico Animal/fisiologia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Exercício Físico/fisiologia , Humanos , Masculino , Camundongos , Atrofia Muscular/fisiopatologia , Condicionamento Físico Animal/métodos , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...