Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Sci Total Environ ; 933: 173012, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719038

RESUMO

Microplastics and nanoplastics (MNPs) have received increasing attention due to their high detection rates in human matrices and adverse health implications. However, the toxicity of MNPs on embryo/fetal development following maternal exposure remains largely unexplored. Zebrafish, sharing genetic similarities with human, boast a shorter life cycle, rapid embryonic development, and the availability of many transgenic strains, is a suitable model for environmental toxicology studies. This review comprehensively explores the existing research on the impacts of MNPs on zebrafish embryo development. MNPs exposure induces a wide array of toxic effects, encompassing neurodevelopmental toxicity, immunotoxicity, gastrointestinal effects, microbiota dysbiosis, cardiac dysfunctions, vascular toxicity, and metabolic imbalances. Moreover, MNPs disrupt the balance between reactive oxygen species (ROS) production and antioxidant capacity, culminating in oxidative damage and apoptosis. This study also offers insight into the current omics- and multi-omics based approaches in MNPs research, which greatly expedite the discovery of biochemical or metabolic pathways, and molecular mechanisms underlying MNPs exposure. Additionally, this review proposes a preliminary adverse outcome pathway framework to predict developmental toxicity caused by MNPs. It provides a comprehensive overview of pathways, facilitating a clearer understanding of the exposure and toxicity of MNPs, from molecular effects to adverse outcomes. The compiled data in this review provide a better understanding for MNPs effects on early life development, with the goal of increasing awareness about the risks posed to pregnant women by MNPs exposure and its potential impact on the health of their future generations.

2.
Mar Pollut Bull ; 203: 116466, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713926

RESUMO

Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.

3.
Orthod Craniofac Res ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558502

RESUMO

INTRODUCTION: The purpose of this study was to evaluate the therapeutic effect of modified clear Twin Block (CTB) aligner and traditional twin block (TB) appliance from skeletal, dentoalveolar and soft tissue changes in adolescents with skeletal class II malocclusion. METHODS: A total of 80 adolescents, included in this study from two medical centres, were distributed into CTB group, TB group and control group based on the treatment they received. Lateral cephalograms at pre-treatment (T1) and post-treatment (T2) were measured by modified Pancherz's cephalometric analysis, and dentoskeletal and soft tissue changes were analysed by independent-sample t-test, paired-sample t-test, ANOVA test and Scheffe's Post Hoc test. RESULTS: Seventy-five adolescents completed the study, including 32 in the CTB group, 32 in the TB group and 11 in the control group. Both CTB and TB treatment showed significant differences in most dentoskeletal and soft tissue measurements. Compared with the control group, improvements were observed in class II molar relationship through significant different in S Vert/Ms-S Vert/Mi in the CTB group (P < .01) and the TB group (P < .001), as well as deep overjet through significant different in S Vert/Is-S Vert/Ii in the CTB group (P < .001) and the TB group (P < .001). Besides, the CTB group also showed less protrusion of lower incisors and resulted in a more significant improvement in profile with fewer adverse effects on speaking, eating and social activities. CONCLUSIONS: For adolescents with skeletal class II malocclusion, CTB appliance was as effective as TB on improving dentoskeletal and soft tissue measurements, featuring more reliable teeth control and patient acceptance.

4.
Environ Pollut ; 347: 123731, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458519

RESUMO

Bisphenol A (BPA), an ingredient in consumer products, has been suggested that it can interfere with bone development and maintenance, whereas the molecule mechanism remains unclear. The objective of this study is to investigate the effect of BPA on early bone differentiation and metabolism, and its potential molecule mechanism by employing hFOB1.19 cell as an in vitro model, as well as larval zebrafish as an in vivo model. The in vitro experiments indicated that BPA decreased cell viability, inhibited osteogenic activity (such as ALP, RUNX2), increased ROS production, upregulated transcriptional or protein levels of apoptosis-related molecules (such as Caspase 3, Caspase 9), while suppressed transcriptional or protein levels of pyroptosis-specific markers (TNF-α, TNF-ß, IL-1ß, ASC, Caspase 1, and GSDMD). Moreover, the evidences from in vivo model demonstrated that exposure to BPA distinctly disrupted pharyngeal cartilage, craniofacial bone development, and retarded bone mineralization. The transcriptional level of bone development-related genes (bmp2, dlx2a, runx2, and sp7), apoptosis-related genes (bcl2), and pyroptosis-related genes (cas1, nlrp3) were significantly altered after treating with BPA in zebrafish larvae. In summary, our study, combining in vitro and in vivo models, confirmed that BPA has detrimental effects on osteoblast activity and bone development. These effects may be due to the promotion of apoptosis, the initiation of oxidative stress, and the inhibition of pyroptosis.


Assuntos
Compostos Benzidrílicos , Subunidade alfa 1 de Fator de Ligação ao Core , Fenóis , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Osteoblastos/metabolismo , Estresse Oxidativo
5.
Chemistry ; 30(22): e202304222, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38270386

RESUMO

ClC is the main family of natural chloride channel proteins that transport Cl- across the cell membrane with high selectivity. The chloride transport and selectivity are determined by the hourglass-shaped pore and the filter located in the central and narrow region of the pore. Artificial unimolecular channel that mimics both the shape and function of the ClC selective pore is attractive, because it could provide simple molecular model to probe the intriguing mechanism and structure-function relevance of ClC. Here we elaborated upon the concept of molecular hourglass plus anion-π interactions for this purpose. The concept was validated by experimental results of molecular hourglasses using shape-persistent 1,3-alternate tetraoxacalix[2]arene[2]triazine as the central macrocyclic skeleton to control the conductance and selectivity, and anion-π interactions as the driving force to facilitate the chloride dehydration and movement along the channel.

6.
RSC Adv ; 14(1): 147-153, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173617

RESUMO

ReNiO3 (Re = Pr, Sm, Eu) solid electrolytes were prepared by the sol-gel method, which were sintered in a pure oxygen atmosphere of 20 MPa at 1000 °C for 24 hours. The DC resistivities of the three materials in air and in a hydrogen-containing atmosphere were tested respectively. The resistivities in the hydrogen-containing atmosphere were about 102, 104, and 105 times higher than those in air and XPS analysis showed that after 10%H2-Ar treatment, the proportion of Ni2+ of PrNiO3, SmNiO3 and EuNiO3 increased successively. The proton transport number of PrNiO3 was lower than 0.5 at 50-500 °C, and SmNiO3 and EuNiO3 were almost pure proton conductors below 200 °C. The conductivities of SmNiO3 and EuNiO3 were 1.08 × 10-4 S cm-1 and 1.83 × 10-5 S cm-1 at 200 °C in 5%H2-Ar. The hydrogen sensing properties of SmNiO3 and EuNiO3 show that the measurement results of the two materials were accurate in the range of 0.5-10% H2.

7.
Ecotoxicol Environ Saf ; 271: 115960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219622

RESUMO

Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.


Assuntos
Ferroptose , Retardadores de Chama , Organofosfatos , Feminino , Animais , Fator 2 Relacionado a NF-E2/genética , Peixe-Zebra , Acetilcolinesterase , Retardadores de Chama/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Espécies Reativas de Oxigênio , Compostos Organofosforados/toxicidade , Estresse Oxidativo , Xantofilas
8.
J Hazard Mater ; 465: 133332, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147758

RESUMO

Triphenyl phosphate (TPhP) is a widely used organophosphorus flame retardant, which has become ubiquitous in the environment. However, little information is available regarding its transgenerational effects. This study aimed to investigate the developmental toxicity of TPhP on F1 larvae offspring of adult male zebrafish exposed to various concentrations of TPhP for 28 or 60 days. The findings revealed significant morphological changes, alterations in locomotor behavior, variations in neurotransmitter, histopathological changes, oxidative stress levels, and disruption of Retinoic Acid (RA) signaling in the F1 larvae. After 28 and 60 days of TPhP exposure, the F1 larvae exhibited a myopia-like phenotype with pathological alterations in the lens and retina. The genes involved in the RA signaling pathway were down-regulated following parental TPhP exposure. Swimming speed and total distance of F1 larvae were significantly reduced by TPhP exposure, and long-term exposure to environmental levels of TPhP had more pronounced effects on locomotor behavior and neurotransmitter levels. In conclusion, TPhP induced histological and morphological alterations in the eyes of F1 larvae, leading to visual dysfunction, disruption of RA signaling and neurotransmitter systems, and ultimately resulting in neurobehavioral abnormalities. These findings highlight the importance of considering the impact of TPhP on the survival and population reproduction of wild larvae.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Masculino , Peixe-Zebra/metabolismo , Compostos Organofosforados/metabolismo , Larva/metabolismo , Retardadores de Chama/metabolismo , Organofosfatos/toxicidade , Neurotransmissores/metabolismo
9.
Inorg Chem ; 62(47): 19350-19357, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960854

RESUMO

The visualized dual-modal stress-temperature sensing refers to the ability of a sensor to provide real-time and visible information about both stress and temperature and has indeed attracted significant interest in various fields. However, the development of convenient methods for achieving this capability remains a challenge. In this work, a dual-modal stress-temperature sensor is successfully fabricated using a ZnS/Cu@CsPbBr1.2I1.8 glass ceramics (GCs)/polydimethylsiloxane (PDMS) (ZCP) composite film. The tunable ML color is achieved by modulating the concentration of CsPbBr1.2I1.8 GCs in the ZCP composite films based on the light conversion process from ZnS/Cu to CsPbBr1.2I1.8 GCs. Additionally, the stress and temperature can be visualized simultaneously by integrating the ML intensity and ML color of the ZCP composite film. This feature allows for the real-time monitoring of automotive tire temperature by embedding the ZCP composite film on the tire surface, enabling a strong and stable response to both stress and temperature changes. Overall, this work offers a convenient, efficient, and repeatable approach for achieving visualized dual-modal stress-temperature sensing in the fields of mechanical engineering, structural health monitoring, and intelligent devices.

10.
Chem Commun (Camb) ; 59(99): 14689-14692, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997041

RESUMO

An arm modification strategy, by replacing relatively rigid, electron-deficient side arms with flexible ether chain arms and linking them onto a tetraoxacalix[2]arene[2]triazine skeleton, was utilized to design an artificial molecular hourglass. The planar bilayer experiments confirmed the unimolecular channel mechanism and suggested reversed ion selectivity from the previously reported anion selectivity to weak cation selectivity.

11.
Chemosphere ; 344: 140401, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839753

RESUMO

Exposure to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) has been found to have an impact on reproductive output and endocrine function in female zebrafish (Danio rerio). However, the transgenerational effects of BDE-47 have not been fully explored in previous reports. In this study, female zebrafish were exposed to BDE-47 for three consecutive weeks. The oogenesis, sex hormones, reproductive histology, and transcriptional profiles of genes along the hypothalamus-pituitary-gonad (HPG) axis were assessed in the exposed-F0 generation. After mating with unexposed males, the transgenerational effects of BDE-47 were evaluated on the basis of histopathology, morphometry and toxicogenome of the unexposed F1 generations at the larval stage. Results indicated that exposure to BDE-47 impaired reproductive capacity, disrupted endocrine system in F0 zebrafish, and compromised craniofacial skeletons and vertebrae development in F1 generations. In addition, through the use of toxicogenomics approach, immune-responsive pathways were found to be significantly enriched, and the transcript expression profiling of immune-related DEGs (IRDs) were dramatically inhibited in F1 generations following maternal BDE-47 exposure, indicating its immunotoxicity to offspring larvae. These findings advance our understanding of the transgenerational toxicity of BDE-47 and advocate for a more comprehensive assessment of other PBDE congeners through histomorphometry and toxicogenomic approaches.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Masculino , Animais , Feminino , Peixe-Zebra/metabolismo , Toxicogenética , Reprodução , Éteres Difenil Halogenados/análise , Larva/genética , Poluentes Químicos da Água/análise
12.
Inorg Chem ; 62(40): 16485-16492, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738045

RESUMO

The current optical anticounterfeit strategies that rely on multimode luminescence in response to the photon or thermal stimuli have significant importance in the field of anticounterfeiting and information encryption. However, the dependence on light and heat sources might limit their flexibility in practical applications. In this work, Er3+ single-doped CaF2 phosphors that show multistimuli-responsive luminescence have been successfully prepared. The as-obtained CaF2:Er3+ phosphor exhibits green photoluminescence (PL) and color-tunable up-conversation (UC) luminescence from red to green due to the cross-relaxation of Er3+ ions. Additionally, as-obtained CaF2:Er3+ phosphors also display green mechano-luminescence behavior, which is induced by the contact electrification between the CaF2 particles and PDMS polymers, enabling the phosphor to flexibly respond to mechanical stimuli. Moreover, feasible anticounterfeiting schemes with the capability of multistimuli-responsive and flexible decryption have been constructed, further expanding the application of optical materials in the field of advanced anticounterfeiting and information encryption.

13.
RSC Adv ; 13(33): 22758-22768, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502826

RESUMO

Large quantities of solutions containing oxalic acid and nitric acid are produced from nuclear fuel reprocessing, but oxalic acid must be removed before nitric acid and plutonium ions can be recovered in these solutions. The degradation of oxalic acid with Pt/SiO2 as a catalyst in nitric acid solutions has the characteristics of a fast and stable reaction, recyclable catalyst, and no introduction of impurity ions into the system. This method is one of the preferred alternatives to the currently used reaction of KMnO4 with oxalic acid but lacks theoretical support. Therefore, this study attempts to clarify the reaction mechanism of the method. First, there was no induction period for this catalytic reaction, and no evidence was found that the nitrous acid produced in the solution could have an effect on oxalic acid degradation. Furthermore, oxidation intermediates (structures of Pt-O) were formed through this reaction between NO3- adsorbed on the active sites and Pt on the catalyst surface, but H+ greatly promoted the reaction. Additionally, oxalic acid degradation through the oxidative dehydrogenation reaction occurred between oxalic acid molecules (HOOC-COOH) and Pt-O, with ·OOC-COOH, which is easily self-decomposable especially in acidic solution, generated simultaneously, and finally CO2 was produced.

14.
Sci Rep ; 13(1): 7399, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149698

RESUMO

Recent experimental and observational research has suggested that childhood allergic asthma and other conditions may be the result of prenatal exposure to environmental contaminants, such as di-(2-ethylhexyl) phthalate (DEHP). In a previous epidemiological study, we found that ancestral exposure (F0 generation) to endocrine disruptors or the common plasticizer DEHP promoted allergic airway inflammation via transgenerational transmission in mice from generation F1 to F4. In the current study, we employed a MethylationEPIC Beadchip microarray to examine global DNA methylation in the human placenta as a function of maternal exposure to DEHP during pregnancy. Interestingly, global DNA hypomethylation was observed in placental DNA following exposure to DEHP at high concentrations. Bioinformatic analysis confirmed that DNA methylation affected genes related to neurological disorders, such as autism and dementia. These results suggest that maternal exposure to DEHP may predispose offspring to neurological diseases. Given the small sample size in this study, the potential role of DNA methylation as a biomarker to assess the risk of these diseases deserves further investigation.


Assuntos
Asma , Dietilexilftalato , Disruptores Endócrinos , Doenças do Sistema Nervoso , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Animais , Feminino , Camundongos , Humanos , Criança , Dietilexilftalato/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Placenta , Exposição Materna/efeitos adversos , Epigênese Genética , Asma/induzido quimicamente , Asma/epidemiologia , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/genética
15.
Environ Sci Pollut Res Int ; 30(29): 73018-73030, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37195602

RESUMO

Vision is the most essential sense system for the human being. Congenital visual impairment affects millions of people globally. It is increasingly realized that visual system development is an impressionable target of environmental chemicals. However, due to inaccessibility and ethical issues, the use of humans and other placental mammals is constrained, which limits our better understanding of environmental factors on ocular development and visual function in the embryonic stage. Therefore, as complementing laboratory rodents, zebrafish has been the most frequently employed to understand the effects of environmental chemicals on eye development and visual function. One of the major reasons for the increasing use of zebrafish is their polychromatic vision. Zebrafish retinas are morphologically and functionally analogous to those of mammalian, as well as evolutionary conservation among vertebrate eye. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements (ions), metal-derived nanoparticles, microplastics, nanoplastics, persistent organic pollutants, pesticides, and pharmaceutical pollutants on the eye development and visual function in zebrafish embryos. The collected data provide a comprehensive understanding of environmental factors on ocular development and visual function. This report highlights that zebrafish is promising as a model to identify hazardous toxicants toward eye development and is hopeful for developing preventative or postnatal therapies for human congenital visual impairment.


Assuntos
Plásticos , Peixe-Zebra , Animais , Feminino , Gravidez , Humanos , Placenta , Organogênese , Transtornos da Visão , Mamíferos
16.
Angew Chem Int Ed Engl ; 62(23): e202302198, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37021747

RESUMO

Inspired by the unique structure and function of the natural chloride channel (ClC) selectivity filter, we present herein the design of a ClC-type single channel molecule. This channel displays high ion transport activity with half-maximal effective concentration, EC50 , of 0.10 µM, or 0.075 mol % (channel molecule to lipid ratio), as determined by fluorescent analysis using lucigenin-encapsulated vesicles. Planar bilayer lipid membrane conductance measurements indicated an excellent Cl- /K+ selectivity with a permeability ratio P Cl - ${{_{{\rm Cl}{^{- }}}}}$ /P K + ${{_{{\rm K}{^{+}}}}}$ up to 12.31, which is comparable with the chloride selectivity of natural ClC proteins. Moreover, high anion/anion selectivity (P Cl - ${{_{{\rm Cl}{^{- }}}}}$ /P Br - ${{_{{\rm Br}{^{- }}}}}$ =66.21) and pH-dependent conductance and ion selectivity of the channel molecule were revealed. The ClC-like transport behavior is contributed by the cooperation of hydrogen bonding and anion-π interactions in the central macrocyclic skeleton, and by the existence of pH-responsive terminal phenylalanine residues.

17.
J Biomed Mater Res B Appl Biomater ; 111(7): 1447-1474, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883838

RESUMO

Regeneration of bone defects is a significant challenge today. As alternative approaches to the autologous bone, scaffold materials have remarkable features in treating bone defects; however, the various properties of current scaffold materials still fall short of expectations. Due to the osteogenic capability of alkaline earth metals, their application in scaffold materials has become an effective approach to improving their properties. Furthermore, numerous studies have shown that combining alkaline earth metals leads to better osteogenic properties than applying them alone. In this review, the physicochemical and physiological characteristics of alkaline earth metals are introduced, mainly focusing on their mechanisms and applications in osteogenesis, especially magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Furthermore, this review highlights the possible cross-talk between pathways when alkaline earth metals are combined. Finally, some of the current drawbacks of scaffold materials are enumerated, such as the high corrosion rate of Mg scaffolds and defects in the mechanical properties of Ca scaffolds. Moreover, a brief perspective is also provided regarding future directions in this field. It is worth exploring that whether the levels of alkaline earth metals in newly regenerated bone differs from those in normal bone. The ideal ratio of each element in the bone tissue engineering scaffolds or the optimal concentration of each elemental ion in the created osteogenic environment still needs further exploration. The review not only summarizes the research developments in osteogenesis but also offers a direction for developing new scaffold materials.


Assuntos
Metais Alcalinoterrosos , Osteogênese , Cálcio , Osso e Ossos , Magnésio , Engenharia Tecidual , Alicerces Teciduais , Regeneração Óssea , Diferenciação Celular
18.
Sci Total Environ ; 868: 161702, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36681333

RESUMO

Exposure to BPA is recently shown to affect cartilage development in teleost fishes; whether BPS and BPAF, its two most frequently used phenolic analogues have similar effect, however, remains unclear. Here, we utilize zebrafish (Danio rerio) as an in-vivo larval model for systematic comparison of the pharyngeal arch-derived cartilage developmental toxicity of BPA, BPS and BPAF. Zebrafish are continuously exposed to three bisphenol analogues (3-BPs) at a range of concentrations since the embryonic stage (0.5 hpf), and identified cartilage malformations of the mandibular and hyoid pharyngeal arches at larval stage (120 hpf). BPA and BPAF prolong length and broaden cartilage angles; however, BPS shortens length and narrows the angles of skull cartilages. The results of the comparative transcriptome show that FoxO and MAPK signaling pathways are closely associated with the toxicity of BPA and BPAF, while BPS exposure affects energy metabolism-related pathways. Moreover, exposure to 3-BPs have an impact on the oxidative stress status. Our data collectively indicate that BPS and BPAF may not be safer than BPA regarding the impact on pharyngeal cartilage development in fish model, the mechanisms still need explorations, and that these two analogues should be applied with caution.


Assuntos
Compostos Benzidrílicos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Larva , Compostos Benzidrílicos/toxicidade , Perfilação da Expressão Gênica , Cartilagem
19.
Environ Int ; 172: 107745, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657258

RESUMO

As a substitute for polybrominated diphenyl ethers (PBDEs), organophosphate flame retardant triphenyl phosphate (TPhP) is widely used in our daily products and diffusely exists in our living surroundings, but there is a paucity of information concerning its neurodevelopmental toxicity. Herein, we investigated the effects of TPhP exposure on developmental parameters, locomotor behavior, oxidative stress, apoptosis and transcriptional levels in zebrafish at different developmental stages, so as to explore the effects of TPhP exposure on zebrafish neural development and the underlying molecular mechanisms. TPhP concentration gradient exposure reduced the survival rate, hatchability, heart rate, body length and eye distance of zebrafish embryos/larvae, and caused malformations of zebrafish larvae. TPhP also leads to abnormal locomotor behaviors, such as reduced swimming distance and swimming speed, and impaired panic avoidance reflex to high light stimulation. TPhP caused ROS accumulation in 96 hpf larvae and induced Nrf2-antioxidant response in zebrafish. In addition, TPhP further activated mitochondrial signaling pathways, which affected apoptosis in the zebrafish eye region, resulting in visual impairment. Neurodevelopmental (mbpa, syn2a, foxo3a and pax6a), Retinoid acid metabolism (cyp26a1, raraa, rbp5, rdh1, crabp1a and rbp2a) and apoptosis-related genes (bcl2a, baxa and casp9) revealed the molecular mechanism of abnormal behavior and phenotypic symptoms, and also indicated that 96 hpf larvae are more sensitive than 7 dpf larvae. Thus, in the present study, we revealed the neurotoxic effects of TPhP at different early life stages in zebrafish, and zebrafish locomotor behavior impairments induced by TPhP exposure are attributed to co-regulation of visuomotor dysfunction and neuro-related genes. These results suggest that the safety of TPhP in organisms and even in humans needs to be further studied.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Organofosfatos/toxicidade , Organofosfatos/metabolismo , Natação , Peixe-Zebra/metabolismo
20.
Neural Regen Res ; 18(2): 299-305, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900407

RESUMO

Currently, there is no cure for traumatic spinal cord injury but one therapeutic approach showing promise is gene therapy. In this systematic review and meta-analysis, we aim to assess the efficacy of gene therapies in pre-clinical models of spinal cord injury and the risk of bias. In this meta-analysis, registered at PROSPERO (Registration ID: CRD42020185008), we identified relevant controlled in vivo studies published in English by searching the PubMed, Web of Science, and Embase databases. No restrictions of the year of publication were applied and the last literature search was conducted on August 3, 2020. We then conducted a random-effects meta-analysis using the restricted maximum likelihood estimator. A total of 71 studies met our inclusion criteria and were included in the systematic review. Our results showed that overall, gene therapies were associated with improvements in locomotor score (standardized mean difference [SMD]: 2.07, 95% confidence interval [CI]: 1.68-2.47, Tau2 = 2.13, I2 = 83.6%) and axonal regrowth (SMD: 2.78, 95% CI: 1.92-3.65, Tau2 = 4.13, I2 = 85.5%). There was significant asymmetry in the funnel plots of both outcome measures indicating the presence of publication bias. We used a modified CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies) checklist to assess the risk of bias, finding that the median score was 4 (IQR: 3-5). In particular, reports of allocation concealment and sample size calculations were lacking. In conclusion, gene therapies are showing promise as therapies for spinal cord injury repair, but there is no consensus on which gene or genes should be targeted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...