Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109596, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692380

RESUMO

Streptococcosis, the most common bacterial disease of fish in recent years, is highly infectious and lethal, and has become an important factor hindering the healthy and sustainable development of aquaculture. Chicken egg yolk antibody (IgY) has the advantages of high antigen specificity, inexpensive and easy to obtain, simple preparation, no toxic side effects, and in line with animal welfare, which is a green and safe alternative to antibiotics. In this study, the potential of specific IgY in the treatment of gastrointestinal pathogens was explored by observing the effects of specific IgY on intestinal flora, pathological tissue, apoptosis, oxidative stress, and inflammatory response of tilapia. We used the specific IgY prepared in the early stage to feed tilapia for 10 days, and then the tilapia was challenged with Streptococcus agalactiae. The results showed that feeding IgY before challenge had a small effect on the intestinal flora, and after challenge specific IgY decreased the proportion of Streptococcus and increased the diversity of the intestinal flora; in histopathology, specific IgY decreased tissue damage and maintained the integrity of tissue structure. Further study found that specific IgY can reduce intestinal epithelial cell apoptosis and reduce caspase activity; at the same time, the content of MDA was decreased, and the activities of SOD, CAT, GSH-Px and GR were increased. In addition, specific IgY can down-regulate the expression levels of IL-8 and TNF-α genes and up-regulate the expression levels of IL-10 and TGF-ß. The results of this study showed that specific IgY could improve the intestinal flora of tilapia infected with Streptococcus agalactiae, reduce intestinal cell apoptosis, oxidative stress injury and inflammatory response, thereby reducing tissue damage and protecting the health of tilapia. Overall, specific IgY can be further explored as a potential antibiotic alternative for gastrointestinal pathogen infections.

2.
Fish Shellfish Immunol ; 150: 109603, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704112

RESUMO

Infection-induced hemolysis results in intravascular hemolysis, which releases hemoglobin (Hb) into the tissues. Free Hb exhibits cytotoxic, oxidative, and pro-inflammatory effects, leading to systemic inflammation, vascular constriction dysfunction, thrombosis, and proliferative vascular lesions. Currently, the impact of intravascular hemolysis on the middle kidney in fish is unclear. Here, the injection of phenylhydrazine (PHZ) was used to establish a persistent hemolysis model in grass carp. The determination results revealed that the PHZ-induced hemolysis caused conspicuous tissue damage in the kidneys of grass carp, increased the levels of Cr in the serum and the expression indicators of kidney injury-related genes in the middle kidney. Prussian blue staining indicated that PHZ-induced hemolysis significantly increased the deposition of iron ions in the kidneys of grass carp, and activated the expression levels of iron metabolism-related genes. The results of oxidative damage-related experiments indicate that under PHZ treatment, the activity of middle kidney cells decreases, and the production of oxidative damage markers malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) increases, simultaneously inhibiting the activity of antioxidant enzymes and upregulating the transcription levels of antioxidant enzyme-related genes. Additionally, the analysis of inflammatory factors revealed a significant upregulation of genes associated with inflammation induced by PHZ-induced hemolysis. The transcriptome analysis was performed to further explore the molecular regulatory effects of hemolysis on tissues, the analysis revealed the treatment of PHZ activated various of programmed cell death (PCD) pathways, including ferroptosis, apoptosis, and autophagy. In summary, this study found that sustained hemolysis in fish results in Hb and iron ion deposition in middle kidney, promoting oxidative damage, ultimately inducing various forms of PCD.

3.
Fish Shellfish Immunol ; 149: 109474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513914

RESUMO

Grass carp hemorrhagic disease is a significant problem in grass carp aquaculture. It releases highly oxidizing hemoglobin (Hb) into tissues, induces rapid autooxidation, and subsequently discharges cytotoxic reactive oxygen species (ROS). However, the mechanism underlying Hb damage to the teleost remains unclear. Here, we employed ferrylHb and heme to incubate L8824 (grass carp liver) cells and quantitatively analyzed the corresponding molecular regulation using the RNA-seq method. Based on the RNA-seq analysis data, after 12 h of incubation of the L8824 cells with ferrylHb, a total of 3738 differentially expressed genes (DEGs) were identified, 1824 of which were upregulated, and 1914 were downregulated. A total of 4434 DEGs were obtained in the heme treated group, with 2227 DEGs upregulated and 2207 DEGs downregulated. KEGG enrichment analysis data revealed that the incubation of ferrylHb and heme significantly activated the pathways related to Oxidative Phosphorylation, Autophagy, Mitophagy and Protein Processing in Endoplasmic Reticulum. The genes associated with NF-κB, autophagy and apoptosis pathways were selected for further validation by quantitative real-time RT-PCR (qRT-PCR). The results were consistent with the RNA-seq data. Taken together, the incubation of Hb and heme induced the molecular regulation of L8824, which consequently led to programmed cell death through multiple pathways.


Assuntos
Carpas , Hemoglobinas , Hepatócitos , Animais , Carpas/imunologia , Carpas/genética , Inflamação/veterinária , Inflamação/imunologia , Morte Celular , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos
4.
Fish Shellfish Immunol ; 149: 109526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554743

RESUMO

In teleost blood, red blood cells (RBCs) are the most common type of cell, and they differ from mammalian RBCs in having a nucleus and other organelles. As nucleated cells, teleost RBCs contribute to the immune response against pathogens, but their antibacterial mechanism remains unclear. Here, we utilized RNA-Seq to analyze gene expression patterns of grass carp (Ctenopharyngodon idellus) RBCs (GcRBCs) stimulated by Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus. Our transcriptomic data showed that bacterial stimulation generated many differentially expressed genes (DEGs). Furthermore, several inflammatory pathways responded to bacterial activation, and the TLR, IL-17, and tumor necrosis factor (TNF) signaling pathways were significantly activated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the findings of qRT-PCR showed markedly elevated expression of various cytokines, including IL-1ß, IL4, IL6, IL8, IL12, and TNFα, in GcRBCs after incubation with bacteria. Reactive oxygen species (ROS) production in GcRBCs was markedly increased after the cells were stimulated with the three bacteria, and the expression of superoxide dismutase, glutathione peroxidase, and antioxidant enzymes, including catalase, was altered. Flow cytometry analysis showed that the apoptosis rate of GcRBCs was enhanced after stimulation with the three bacteria for different times. In summary, our findings reveal that bacterial stimulation activates the immune response of GcRBCs by regulating ROS release, cytokine expression, and the antioxidant system, leading to apoptosis of GcRBCs.


Assuntos
Aeromonas hydrophila , Carpas , Eritrócitos , Escherichia coli , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Imunidade Inata , Animais , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Eritrócitos/imunologia , Aeromonas hydrophila/fisiologia , Imunidade Inata/genética , Escherichia coli/imunologia , Escherichia coli/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Staphylococcus aureus/fisiologia , Staphylococcus aureus/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/veterinária , Transcriptoma/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/veterinária
5.
Biomed Pharmacother ; 172: 116280, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368837

RESUMO

OBJECTIVE: 2-Dodecyl-6-Methoxycyclohexa-2, 5-Diene-1, 4-Dione (DMDD) isolated from Averrhoa carambola L. root, has been proven therapeutic effects on diabetic kidney disease (DKD). This research aims to assess DMDD's effects on DKD and to investigate its underlying mechanisms, to establish DMDD as a novel pharmaceutical agent for DKD treatment. METHODS: The human renal tubular epithelial (HK-2) cells were induced by high glucose (HG) to mimic DKD and followed by DMDD treatment. The cytotoxicity of DMDD was assessed using the Cell Counting Kit-8 (CCK-8) assay. The migratory capacity of HK-2 cells was evaluated through transwell and scratch-wound assays. To investigate the effect of Smad7 and miR-21-5p, lentiviral transfection was employed in HK-2 cells. Additionally, the expression of proteins related to epithelial-mesenchymal transition (EMT) and TGFß1/Smad2/3 pathway was checked by QRT-PCR, Western blot, and immunofluorescence techniques. RESULTS: This study has shown that DMDD significantly suppresses cell migration and the expression of Vimentin, α-SMA, TGFß1, and p-Smad2/3 in HK-2 cells under HG conditions. Concurrently, DMDD enhances the protein expression of E-cadherin and Smad7. Intriguingly, the therapeutic effect of DMDD was abrogated upon Smad7 silencing. Further investigations revealed that DMDD effectively inhibits miR-21-5p expression, which is upregulated by HG. Downregulation of miR-21-5p inhibits the activation of the TGFß1/Smad2/3 pathway and EMT induced by HG. In contrast, overexpression of miR-21-5p negates DMDD's therapeutic benefits. CONCLUSION: DMDD mitigates EMT in HG-induced HK-2 cells by modulating the miR-21-5p/Smad7 pathway, thereby inhibiting renal fibrosis in DKD. These findings suggest that DMDD holds promise as a potential therapeutic agent for DKD.


Assuntos
Averrhoa , Cicloexenos , Nefropatias Diabéticas , Transdução de Sinais , Humanos , Transição Epitelial-Mesenquimal , Glucose/metabolismo , MicroRNAs/metabolismo , Cicloexenos/farmacologia , Nefropatias Diabéticas/tratamento farmacológico
6.
Angew Chem Int Ed Engl ; 63(4): e202308951, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38052724

RESUMO

Nanohybrid photosystems have advantages in converting solar energy into electricity, while natural photosystems based solar-powered energy-storage device is still under developed. Here, we fabricate a new kind of photo-rechargeable zinc-ion hybrid capacitor (ZHC) benefiting from light-harvesting carbon dots (CDs) and natural thylakoids for realizing solar energy harvesting and storage simultaneously. Under solar light irradiation, the embedded CDs in thylakoids (CDs/Thy) can convert the less absorbed green light into highly absorbed red light for thylakoids, besides, Förster resonance energy transfer (FRET) between CDs and Thy also occurs, which facilitates the photoelectrons generation during thylakoids photosynthesis, thereby resulting in 6-fold photocurrent output in CDs/Thy hybrid photosystem, compared to pristine thylakoids. Using CDs/Thy as the photocathode in ZHCs, the photonic hybrid capacitor shows photoelectric conversion and storage features. CDs can improve the photo-charging voltage response of ZHCs to ≈1.2 V with a remarkable capacitance enhancement of 144 % under solar light. This study provides a promising strategy for designing plant-based photonic and electric device for solar energy harvesting and storage.

7.
Microb Pathog ; 186: 106502, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103581

RESUMO

Starvation stress can profoundly impact various physiological parameters in fish, including metabolism, behavior, meat quality, and reproduction. However, the repercussions of starvation on the intestinal microbiota of grass carp remain under-explored. This research aimed to elucidate the effects of a 28-day starvation period on the composition of the intestinal microbiota of grass carp. Tissue pathology assessments revealed significant alterations in the dimensions of intestinal villi in the foregut, midgut, and hindgut as compared to the controls. Specifically, dominant differences appeared in both the length and width of the villi. Moreover, a marked decline in the goblet cell population was observed across all the intestinal segments. 16S rDNA sequencing was used to investigate changes in the gut microbiota, which revealed distinct clustering patterns among the starved and control groups. While α diversity metrics remained consistent for the anterior intestine, significant deviations were recorded in the Shannon (midgut: ***P < 0.001; hindgut: *P < 0.05) and Simpson indices (midgut and hindgut: ***P < 0.001), demonstrating alterations in microbial richness and evenness. At the phylum level, Proteobacteria, Bacteroidetes, and Fusobacteria emerged as dominant groups post-starvation. Other bacterial taxa, such as Actinobacteria and Verrucomicrobia, decreased, whereas Bacteroidetes and Firmicutes showed a small increase. In summation, starvation induces considerable morphological and microbial shifts in the grass carp intestine, and thus, this study offers valuable insights into their cultivation strategies.


Assuntos
Carpas , Animais , Bactérias/genética , Intestinos/microbiologia , Proteobactérias/genética , Bacteroidetes
8.
Fish Shellfish Immunol ; 145: 109315, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134975

RESUMO

In contrast to mammalian red blood cells (RBCs), Osteichthyes RBCs contain a nucleus and organelles, suggesting the involvement of more intricate mechanisms, particularly in the context of ferroptosis. In this study, we utilized RBCs from Clarias fuscus (referred to as Cf-RBCs) as a model system. We conducted RNA-seq analysis to quantify gene expression levels in Cf-RBCs after exposure to both Aeromonas hydrophila and lipopolysaccharides. Our analysis unveiled 1326 differentially expressed genes (DEGs) in Cf-RBCs following 4 h of incubation with A. hydrophila, comprising 715 and 611 genes with upregulated and downregulated expression, respectively. These DEGs were further categorized into functional clusters: 292 related to cellular processes, 241 involved in environmental information processing, 272 associated with genetic information processing, and 399 linked to organismal systems. Additionally, notable changes were observed in genes associated with the autophagy pathway at 4 h, and alterations in the ferroptosis pathway were observed at 8 h following A. hydrophila incubation. To validate these findings, we assessed the expression of cytokines (DMT1, TFR1, LC3, and GSS). All selected genes were significantly upregulated after exposure to A. hydrophila. Using flow cytometry, we evaluated the extent of ferroptosis, and the group incubated with A. hydrophila for 8 h exhibited higher levels of lipid peroxidation compared with the 4-h incubation group, even under baseline conditions. An evaluation of the glutathione redox system through GSSG/GSH ratios indicated an increased ratio in Cf-RBCs after exposure to A. hydrophila. In summary, our data suggest that A. hydrophila may induce ferroptosis in Cf-RBCs, potentially by triggering the cystine/glutamate antiporter system (system XC-), while Cf-RBCs counteract ferroptosis through the regulation of the glutathione redox system. These findings contribute to our understanding of the iron overload mechanism in Osteichthyes RBCs, provide insights into the management of bacterial diseases in Clarias fuscus, and offer potential strategies to mitigate economic losses in aquaculture.


Assuntos
Aeromonas hydrophila , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/fisiologia , Apoptose , Eritrócitos , Glutationa , Infecções por Bactérias Gram-Negativas/microbiologia , Mamíferos
9.
Drug Deliv ; 30(1): 2219870, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37336779

RESUMO

Inhalable messenger RNA (mRNA) has demonstrated great potential in therapy and vaccine development to confront various lung diseases. However, few gene vectors could overcome the airway mucus and intracellular barriers for successful pulmonary mRNA delivery. Apart from the low pulmonary gene delivery efficiency, nonnegligible toxicity is another common problem that impedes the clinical application of many non-viral vectors. PEGylated cationic peptide-based mRNA delivery vector is a prospective approach to enhance the pulmonary delivery efficacy and safety of aerosolized mRNA by oral inhalation administration. In this study, different lengths of hydrophilic PEG chains were covalently linked to an amphiphilic, water-soluble pH-responsive peptide, and the peptide/mRNA nano self-assemblies were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro mRNA binding and release, cellular uptake, transfection, and cytotoxicity were studied, and finally, a proper PEGylated peptide with enhanced pulmonary mRNA delivery efficiency and improved safety in mice was identified. These results showed that a proper N-terminus PEGylation strategy using 12-monomer linear monodisperse PEG could significantly improve the mRNA transfection efficiency and biocompatibility of the non-PEGylated cationic peptide carrier, while a longer PEG chain modification adversely decreased the cellular uptake and transfection on A549 and HepG2 cells, emphasizing the importance of a proper PEG chain length selection. Moreover, the optimized PEGylated peptide showed a significantly enhanced mRNA pulmonary delivery efficiency and ameliorated safety profiles over the non-PEGylated peptide and LipofectamineTM 2000 in mice. Our results reveal that the PEGylated peptide could be a promising mRNA delivery vector candidate for inhaled mRNA vaccines and therapeutic applications for the prevention and treatment of different respiratory diseases in the future.


Assuntos
Peptídeos , Polietilenoglicóis , Animais , Camundongos , RNA Mensageiro , Polietilenoglicóis/química , Peptídeos/química , Transfecção , Concentração de Íons de Hidrogênio
10.
Aggress Behav ; 49(5): 536-546, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243977

RESUMO

A large body of evidence linked childhood maltreatment (CM) to juvenile violence and delinquent behavior. However, little is known about the association between CM and homicidal ideation in early adolescents. This study aimed to examine that relationship and to explore the serial mediating role of borderline personality features (BPF) and aggression in that relationship in a large sample of early adolescents. A total of 5724 early adolescents (mean age: 13.5 years) were recruited from three middle schools in Anhui Province, China. The participants were invited to complete self-report questionnaires regarding their history of CM, BPF, aggression, and homicidal ideation. Mediation analyses were evaluated using structural equation modeling. A total of 669 participants (11.7%) reported homicidal ideation in the past 6 months. CM victimization was positively associated with homicidal ideation after adjusting for covariates. Furthermore, the serial mediation analysis showed a significant indirect effect of CM on homicidal ideation through BPF and subsequent aggression. Exposure to maltreatment in childhood is likely to manifest BPF and subsequently higher levels of aggression, which in turn are related to increased homicidal ideation. These findings suggest the need for early intervention for BPF and aggression in early adolescents exposed to CM to prevent the development of homicidal ideation.


Assuntos
Maus-Tratos Infantis , Transtornos Mentais , Adolescente , Criança , Humanos , Agressão , População do Leste Asiático , Personalidade , Homicídio/psicologia , Transtorno da Personalidade Borderline/psicologia
11.
Small ; 19(31): e2206222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36907994

RESUMO

Optimizing photosynthesis is imperative for providing energy and organics for all life on the earth. Here, carbon dots doped with pyridinic nitrogen (named lev-CDs) are synthesized by the one-pot hydrothermal method, and the structure-function relationship between functional groups on lev-CDs and photosynthesis of Chlorella pyrenoidosa (C. pyrenoidosa) is proposed. Pyridinic nitrogen plays a key role in the positive effect on photosynthesis caused by lev-CDs. In detail, lev-CDs act as electron donors to supply photo-induced electrons to P680+ and QA+ , causing electron transfer from lev-CDs to the photosynthetic electron transport chain in the photosystems. In return, the recombination efficiency of electron-hole pairs on lev-CDs decreases. As a result, the electron transfer rate in the electron transport chain, the activity of photosystem II, and the Calvin cycle are enhanced. Moreover, the electron transfer rate between C. pyrenoidosa and external circumstances enhanced by lev-CDs is about 50%, and electrons exported from C. pyrenoidosa can be used to reduce iron(III). This study is of great significance for engineering nanomaterials to improve photosynthesis.


Assuntos
Chlorella , Pontos Quânticos , Transporte de Elétrons , Elétrons , Carbono/farmacologia , Nitrogênio , Compostos Férricos/farmacologia , Fotossíntese
12.
Biosens Bioelectron ; 219: 114848, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327556

RESUMO

Divalent copper is a double-edged sword for plants, excess or shortage of copper ions will cause adverse reactions in plants. Currently, Cu2+ sensor for plants is still underdeveloped and new technology is urgently required for realizing one-step and real-time detection of Cu2+ in plants. Herein, a home-made and low-cost sensing platform is constructed by using carbon dots (CDs) as the optical probe, electronic devices for image acquisition, and a built-in algorithm program for image processing, which allows the dynamic monitoring of Cu2+ distribution in different plant species with high spatial and temporal resolution. We found that the detection limit of R-CDs for Cu2+ in water sample was 0.375 nM, and 11.7 mg/kg or even less Cu2+ in plants can be visually observed and accurately detected by the sensing platform. Moreover, this sensing platform has also been employed for reporting the spatial distribution of Cu2+ in the external environment of plants, demonstrating its applicability for monitoring Cu2+ both in living plants and the surrounding environment. This study provides a smart sensing platform for precise detection in plant internal and external environments, offering a promising strategy for precision agriculture in real-time and remote-control manners.

13.
Neurotox Res ; 40(4): 961-972, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35699892

RESUMO

Alzheimer's disease (AD) causes progressive decline of memory and cognitive deficits. Because of its complicated pathogenesis, the prevention and therapy of AD remain an enormous challenge. It has been reported that catalpol possessed neuroprotective effects against AD. However, the involved mechanism still needs to be intensively studied. Therefore, the effects of catalpol on N2a/APP695swe cells and APP/PS1 mice were identified in the current study. Catalpol could improve cytotoxicity according to CCK-8 assay and ameliorate cellular morphological changes in N2a/APP695swe cells. Neuronal structural damage in the hippocampal CA1 region of APP/PS1 AD mice was improved according to HE staining and immunohistochemistry of NeuN. Meanwhile, catalpol administration ameliorated cognitive deficits confirmed by behavior performance of APP/PS1 mice. Hoechst 33,342 staining and Annexin V-FITC/PI double staining demonstrated that catalpol could reduce apoptosis in N2a/APP695swe cells. Likewise, TUNEL staining also manifested that catalpol significantly reduced apoptosis in hippocampal CA1 region of APP/PS1 mice. Catalpol administration also could improve mitochondrial functions indicated by the ameliorative mitochondrial morphology, the decreased ROS generation, and the increased MMP in N2a/APP695swe cells. Subsequently, catalpol restrained oligomerization of Aß1-42, verified by a reduced ThT fluorescence dose- and time-dependently. Additionally, both Aß1-40 and Aß1-42 aggregation were decreased in N2a/APP695swe cells and APP/PS1 mice administrated with catalpol confirmed by ELISA and western blot. Western blot also showed that catalpol facilitated the phosphorylation of AKT and GSK3ß, and impeded the expression of BACE1 both in vivo and in vitro. Finally, a slight alteration in lactylation, 2-hydroxyisobutyrylation, and phosphorylation were found in N2a/APP695swe cells treated with catalpol. Together, these findings manifested that catalpol served a neuroprotective effect in AD and might be a novel and expecting prophylactic or curative candidate for AD or neurodegenerative diseases therapy.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases , Modelos Animais de Doenças , Glucosídeos Iridoides , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Presenilina-1/genética
14.
BMC Microbiol ; 22(1): 38, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109809

RESUMO

BACKGROUND: Soil microbes exist throughout the soil profile and those inhabiting topsoil (0-20 cm) are believed to play a key role in nutrients cycling. However, the majority of the soil microbiology studies have exclusively focused on the distribution of soil microbial communities in the topsoil, and it remains poorly understood through the subsurface soil profile (i.e., 20-40 and 40-60 cm). Here, we examined how the bacterial community composition and functional diversity changes under intensive fertilization across vertical soil profiles [(0-20 cm (RS1), 20-40 cm (RS2), and 40-60 cm (RS3)] in the red soil of pomelo orchard, Pinghe County, Fujian, China. RESULTS: Bacterial community composition was determined by 16S rRNA gene sequencing and interlinked with edaphic factors, including soil pH, available phosphorous (AP), available nitrogen (AN), and available potassium (AK) to investigate the key edaphic factors that shape the soil bacterial community along with different soil profiles. The most dominant bacterial taxa were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Crenarchaeota, and Bacteriodetes. Bacterial richness and diversity was highest in RS1 and declined with increasing soil depth. The distinct distribution patterns of the bacterial community were found across the different soil profiles. Besides, soil pH exhibited a strong influence (pH ˃AP ˃AN) on the bacterial communities under all soil depths. The relative abundance of Proteobacteria, Actinobacteria, Crenarchaeota, and Firmicutes was negatively correlated with soil pH, while Acidobacteria, Chloroflexi, Bacteriodetes, Planctomycetes, and Gemmatimonadetes were positively correlated with soil pH. Co-occurrence network analysis revealed that network topological features were weakened with increasing soil depth, indicating a more stable bacterial community in the RS1. Bacterial functions were estimated using FAPROTAX and the relative abundance of functional bacterial community related to metabolic processes, including C-cycle, N-cycle, and energy production was significantly higher in RS1 compared to RS2 and RS3, and soil pH had a significant effect on these functional microbes. CONCLUSIONS: This study provided the valuable findings regarding the structure and functions of bacterial communities in red soil of pomelo orchards, and highlighted the importance of soil depth and pH in shaping the soil bacterial population, their spatial distribution and ecological functioning. These results suggest the alleviation of soil acidification by adopting integrated management practices to preserve the soil microbial communities for better ecological functioning.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Citrus , Microbiota/fisiologia , Microbiologia do Solo , Solo/química , Bactérias/classificação , China , Concentração de Íons de Hidrogênio , Microbiota/genética , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética
15.
Neurotox Res ; 40(1): 230-240, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34994954

RESUMO

Alzheimer's disease (AD) is a typical neurodegenerative disease. Well-established studies have shown an elevated level of ROS (reactive oxygen species) that induces oxidative stress in AD. Saikosaponin-D exhibited significant therapeutic effects on neurodegenerative diseases. However, its in-depth molecular mechanisms against neurotoxicity remain not fully uncovered. Herein, the possible protective effects of saikosaponin-D on glutamate-induced neurotoxicity in SH-SY5Y cells and the underlying mechanism were elucidated. Saikosaponin-D pretreatment could ameliorate glutamate-induced cytotoxicity according to MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and depress apoptosis according to Hoechst 33,342 staining and Annexin V-FITC/PI double staining in SH-SY5Y cells. Additionally, saikosaponin-D administration suppressed oxidative stress in response to glutamate indicated by diminished intracellular ROS formation and reduced MDA (malondialdehyde) content in SH-SY5Y cells. These phenomena, appeared to correlate with the recovered cellular antioxidant enzyme activities and inducted HO-1 (heme oxygenase-1) expression accompanying the nuclear translocation of Nrf2 conduct by saikosaponin-D preconditioning which had been altered by glutamate, were correlated with its neuroprotective. Furthermore, addition of LY294002, a selective inhibitor of PI3K (phosphatidylinositol 3 kinase), blocked saikosaponin-D-caused Nrf2 nuclear translocation and reversed the protection of saikosaponin-D against glutamate in SH-SY5Y cells. Moreover, saikosaponin-D exhibited antioxidant potential with high free radical-scavenging activity as confirmed by a DPPH (2,2-diphenyl-1-picrylhydrazyl) and TEAC (Trolox equivalent antioxidant capacity) in a cell-free system in vitro. Taken together, our results indicated that saikosaponin-D enhanced cellular antioxidant capacity through not only intrinsic free radical-scavenging activity but also induction of endogenous antioxidant enzyme activities and HO-1 expression mediated, at least in part, by activating PI3K and subsequently Nrf2 nuclear translocation, thereby protecting the SH-SY5Y cells from glutamate-induced oxidative cytotoxicity. In concert, these data raise the possibility that saikosaponin-D may be an attractive candidate for prevention and treatment of AD and other diseases related to oxidation in the future.


Assuntos
Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores , Ácido Oleanólico , Estresse Oxidativo , Saponinas , Apoptose , Linhagem Celular Tumoral , Ácido Glutâmico/farmacologia , Heme Oxigenase-1/metabolismo , Humanos , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas , Fármacos Neuroprotetores/farmacologia , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Transdução de Sinais
16.
J Fungi (Basel) ; 7(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34356933

RESUMO

Soil fungi play a critical role in plant performance and soil nutrient cycling. However, the understanding of soil fungal community composition and functions in response to different nutrients management practices in red soils remains largely unknown. Here, we investigated the responses of soil fungal communities and functions under conventional farmer fertilization practice (FFP) and different nutrient management practices, i.e., optimization of NPK fertilizer (O) with soil conditioner (O + C), with lime and mushroom residue (O + L + M), and with lime and magnesium fertilizer (O + L + Mg). Illumina high-throughput sequencing was used for fungal identification, while the functional groups were inferred with FUNGuild. Nutrient management practices significantly raised the soil pH to 4.79-5.31 compared with FFP (3.69), and soil pH had the most significant effect (0.989 ***) on fungal communities. Predominant phyla, including Ascomycota, Basidiomycota, and Mortierellomycota were identified in all treatments and accounted for 94% of all fungal communities. The alpha diversity indices significantly increased under nutrients management practices compared with FFP. Co-occurrence network analysis revealed the keystone fungal species in the red soil, i.e., Ascomycota (54.04%), Basidiomycota (7.58%), Rozellomycota (4.55%), and Chytridiomycota (4.04%). FUNGuild showed that the relative abundance of arbuscular mycorrhizal fungi and ectomycorrhizal fungi was higher, while pathogenic fungi were lower under nutrient management practices compared with FFP. Our findings have important implications for the understanding of improvement of acidic soils that could significantly improve the soil fungal diversity and functioning in acidic soils.

17.
EClinicalMedicine ; 31: 100646, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33385122

RESUMO

BACKGROUND: The high prevalence of ocular manifestations (OMs) in patients with human immunodeficiency virus (HIV) infection and chronic diseases such as diabetes has become a global health issue. However, there is still a lack of an appropriate ophthalmic diagnostic procedure for the early detection of OMs in this population, leading to the risk of an irreversible visual impairment that substantially affects the quality of life of these patients. METHODS: The Guangzhou HIV Infection Study was a retrospective study that enrolled hospitalised HIV-infected patients in Guangzhou between January 2005 and December 2016, period corresponding to the highly active antiretroviral therapy (HAART) era in China. We collected data on OMs, systemic diseases, hospitalisation, and demographic characteristics. We classified the patients into 3 groups according to the ophthalmic examination mode they underwent: the non-ophthalmologist examination group (patients hospitalised in 2005-2011 who were only treated by infectious disease physicians), the on-demand ophthalmic examination group (patients hospitalised in 2012-2013 who were referred for a consultation with an ophthalmologist), and the routine ophthalmic examination group (patients hospitalised in 2014-2016 who routinely underwent standard ophthalmic examinations). Binary logistic regression models were used to investigate the factors related to OMs. FINDINGS: A total of 8,743 hospitalised HIV-infected patients were enrolled. The prevalence of detected OMs were 1.5% in the non-ophthalmologist examination group, 1.9% in the on-demand ophthalmic examination group, and 12.8% in the routine ophthalmic examination group. The odds of detection of OMs were highest in the routine ophthalmic examination group (adjusted odds ratio [aOR]=9.24, [95%CI, 6.51-13.12], compared to the non-ophthalmologist examination group). The detection of all types of OMs increased substantially, with keratitis, retinitis and vascular abnormalities increased the most (by 15.8-20.0 times). In the routine examination group, patients who were older than 50 years, males, with medical insurance, and were not resident in Guangzhou, had higher odds to have OMs. Several systemic diseases also increased the odds of OMs, with the highest odds among patients with a cytomegalovirus infection (aOR=5.59, [95%CI, 4.12-7.59]). Patients with retinitis, retinopathy and conjunctivitis had higher odds of having a CD4+ T cell counts less than 200 cells/µL compared to the patients that did not have these referred OMs. INTERPRETATION: The implementation of a routine ophthalmic examination has improved the odds of OM detection by approximately 9 times and increased the diagnosis rates of all types of OMs. Therefore, we encourage all HIV-infected patients to undergo regular ophthalmic examinations. Patients with OMs, especially retinopathy and retinitis, need to be evaluated for immune function (such as CD4+ T cell counts) and systemic diseases.

18.
ACS Appl Bio Mater ; 4(9): 6937-6945, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006993

RESUMO

Carbon dots (CDs) with exciting photoluminescence characteristics, mild toxicity, and good biocompatibility are the research hotspots in biomedical application. Here, a compact antibacterial activity of CDs from levofloxacin hydrochloride is reported. The obtained CDs with an average size of 1.27 nm have fascinating antibacterial properties against both gram-positive and negative bacteria, with minimum inhibitory concentrations (MICs) of 64, 128, 64, and 128 µg/mL for Escherichia coli (E. coli),Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis). The antibacterial processes of CDs from extracellular to intracellular were demonstrated, including physical/chemical binding to membrane, wrapping on the surface, destruction of the cell membrane, and promoting reactive oxygen species (ROS) production into the cell without additional light or oxidant. Surprisingly, CDs exert moderate cytotoxicity on mammalian cells at the equivalent bactericidal concentration, in which the cell viability is more than 80% at 100 µg/mL of CDs. The investigation of antibacterial CDs may provide a useful avenue for further exploiting CD-based nano-bactericides in biomedical applications.


Assuntos
Carbono , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Bactérias , Carbono/farmacologia , Escherichia coli , Mamíferos , Pseudomonas aeruginosa
19.
JAMA Ophthalmol ; 138(5): 519-526, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32215587

RESUMO

Importance: Evaluating corneal morphologic characteristics with corneal tomographic scans before refractive surgery is necessary to exclude patients with at-risk corneas and keratoconus. In previous studies, researchers performed screening with machine learning methods based on specific corneal parameters. To date, a deep learning algorithm has not been used in combination with corneal tomographic scans. Objective: To examine the use of a deep learning model in the screening of candidates for refractive surgery. Design, Setting, and Participants: A diagnostic, cross-sectional study was conducted at the Zhongshan Ophthalmic Center, Guangzhou, China, with examination dates extending from July 18, 2016, to March 29, 2019. The investigation was performed from July 2, 2018, to June 28, 2019. Participants included 1385 patients; 6465 corneal tomographic images were used to generate the artificial intelligence (AI) model. The Pentacam HR system was used for data collection. Interventions: The deidentified images were analyzed by ophthalmologists and the AI model. Main Outcomes and Measures: The performance of the AI classification system. Results: A classification system centered on the AI model Pentacam InceptionResNetV2 Screening System (PIRSS) was developed for screening potential candidates for refractive surgery. The model achieved an overall detection accuracy of 94.7% (95% CI, 93.3%-95.8%) on the validation data set. Moreover, on the independent test data set, the PIRSS model achieved an overall detection accuracy of 95% (95% CI, 88.8%-97.8%), which was comparable with that of senior ophthalmologists who are refractive surgeons (92.8%; 95% CI, 91.2%-94.4%) (P = .72). In distinguishing corneas with contraindications for refractive surgery, the PIRSS model performed better than the classifiers (95% vs 81%; P < .001) in the Pentacam HR system on an Asian patient database. Conclusions and Relevance: PIRSS appears to be useful in classifying images to provide corneal information and preliminarily identify at-risk corneas. PIRSS may provide guidance to refractive surgeons in screening candidates for refractive surgery as well as for generalized clinical application for Asian patients, but its use needs to be confirmed in other populations.


Assuntos
Topografia da Córnea/métodos , Aprendizado Profundo , Ceratocone/diagnóstico , Procedimentos Cirúrgicos Refrativos , Tomografia/instrumentação , Adulto , Algoritmos , Inteligência Artificial , China , Estudos Transversais , Feminino , Humanos , Ceratocone/classificação , Ceratocone/cirurgia , Aprendizado de Máquina , Masculino , Modelos Teóricos , Curva ROC , Adulto Jovem
20.
Artif Cells Nanomed Biotechnol ; 46(sup3): S1141-S1151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30453796

RESUMO

The hierarchical microtextured/nanotextured topographies have been recognized to have better tissue integration properties, but the underlying mechanisms are only partially understood. Hedgehog signaling plays a pivotal role in developmental and homeostatic angiogenesis. We suppose that the Hedgehog-Gli1 signaling may play a significant role in the response of endothelial cells to microtextured/nanotextured topographies (MNTs). To confirm this hypothesis, we produced the MNTs decorated with TiO2 nanotubes of two different diameters (25 and 70 nm), and the proliferation, apoptosis, angiogenesis-related genes expression and Hedgehog signaling activity of human umbilical vein endothelial cells (HUVECs) grown onto these MNTs were measured. Our results showed that the MNTs induced significantly high expression of Sonic Hedgehog (SHH), Smoothened (SMO) and GLI1 in the HUVECs as well as high activation of Hedgehog-Gli1 signaling, compared to the smooth surface. The HUVECs grown on the MNTs showed significantly high levels of adhesion, proliferation and expression of angiogenesis-related genes, including angiopoietin-1 (ANG-1), vascular endothelial growth factor (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2) and endothelial nitric oxide synthase (ENOS); these enhancements were attenuated by siRNA-mediated depletion of SMO, which indicated a significant role of Hedgehog-Gli1 signaling in mediating the enhanced effect of the MNTs on the angiogenic potential of HUVECs. This study may contribute to the modification of biomaterial surfaces for better tissue integration and clinical performance.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Nanotubos/química , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Titânio , Proteína GLI1 em Dedos de Zinco/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...