Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Clin Cases ; 12(11): 1960-1966, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38660543

RESUMO

BACKGROUND: Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system, causing encephalitis. Few cases of anti-N-methyl-D-aspartate receptor autoimmune encephalitis (AE) secondary to neurosyphilis have been reported. We report a neurosyphilis patient with anti-γ-aminobutyric acid-B receptor (GABABR) AE. CASE SUMMARY: A young man in his 30s who presented with acute epileptic status was admitted to a local hospital. He was diagnosed with neurosyphilis, according to serum and cerebrospinal fluid (CSF) tests for syphilis. After 14 d of antiepileptic treatment and anti-Treponema pallidum therapy with penicillin, epilepsy was controlled but serious cognitive impairment, behavioral, and serious psychiatric symptoms were observed. He was then transferred to our hospital. The Mini-Mental State Examination (MMSE) crude test results showed only 2 points. Cranial magnetic resonance imaging revealed significant cerebral atrophy and multiple fluid-attenuated inversion recovery high signals in the white matter surrounding both lateral ventricles, left amygdala and bilateral thalami. Anti-GABABR antibodies were discovered in CSF (1:3.2) and serum (1:100). The patient was diagnosed with neurosyphilis complicated by anti-GABABR AE, and received methylprednisolone and penicillin. Following treatment, his mental symptoms were alleviated. Cognitive impairment was significantly improved, with a MMSE of 8 points. Serum anti-GABABR antibody titer decreased to 1:32. The patient received methylprednisolone and penicillin after discharge. Three months later, the patient's condition was stable, but the serum anti-GABABR antibody titer was 1:100. CONCLUSION: This patient with neurosyphilis combined with anti-GABABR encephalitis benefited from immunotherapy.

2.
Research (Wash D C) ; 7: 0332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533182

RESUMO

2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (Spiro-OMeTAD) represents the state-of-the-art hole-transporting material (HTM) in n-i-p perovskite solar cells (PSCs). However, its susceptibility to stability issues has been a long-standing concern. In this study, we embark on a comprehensive exploration of the untapped potential within the family of spiro-type HTMs using an innovative anisotropic regulation strategy. Diverging from conventional approaches that can only modify spirobifluorene with single functional group, this approach allows us to independently tailor the two orthogonal components of the spiro-skeleton at the molecular level. The newly designed HTM, SF-MPA-MCz, features enhanced thermal stability, precise energy level alignment, superior film morphology, and optimized interfacial properties when compared to Spiro-OMeTAD, which contribute to a remarkable power conversion efficiency (PCE) of 24.53% for PSCs employing SF-MPA-MCz with substantially improved thermal stability and operational stability. Note that the optimal concentration for SF-MPA-MCz solution is only 30 mg/ml, significantly lower than Spiro-OMeTAD (>70 mg/ml), which could remarkably reduce the cost especially for large-area processing in future commercialization. This work presents a promising avenue for the versatile design of multifunctional HTMs, offering a blueprint for achieving efficient and stable PSCs.

3.
Eur J Pediatr ; 183(3): 1403-1414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38170291

RESUMO

Mendelian disorders of the epigenetic machinery (MDEMs) are caused by genetic mutations, a considerable fraction of which are associated with epigenetic modification. These MDEMs exhibit phenotypic overlap broadly characterized by multiorgan abnormalities. The variant detected in genes associated with epigenetic modification can lead to short stature accompanied with multiple system abnormalities. This study is aimed at presenting and summarizing the diagnostic rate, clinical, and genetic profile of MDEMs-associated short stature. Two hundred and fourteen short-stature patients with multiorgan abnormalities were enrolled. Clinical information and whole exome sequence (WES) were analyzed for these patients. WES identified 33 pathogenic/likely pathogenic variants in 19 epigenetic modulation genes (KMT2A, KMT2D, KDM6A, SETD5, KDM5C, HUWE1, UBE2A, NIPBL, SMC1A, RAD21, CREBBP, CUL4B, BPTF, ANKRD11, CHD7, SRCAP, CTCF, MECP2, UBE3A) in 33 patients (15.4%). Of note, 19 variants had never been reported previously. Furthermore, these 33 variants were associated with 16 different disorders with overlapping clinical features characterized by development delay/intelligence disability (31/33; 93.9%), small hands (14/33; 42.4%), clinodactyly of the 5th finger (14/33; 42.4%), long eyelashes (13/33; 39.4%), and hearing impairment (9/33; 27.3%). Additionally, several associated phenotypes are reported for the first time: clubbing with KMT2A variant, webbed neck with SETD5 variant, retinal detachment with CREBBP variant, sparse lateral eyebrow with HUWE1 variant, and long palpebral fissure with eversion of the lateral third of the low eyelid with SRCAP variant.Conclusions: Our study provided a new conceptual framework for further understanding short stature. Specific clinical findings may indicate that a short-stature patient may have an epigenetic modified gene variant.


Assuntos
Anormalidades Múltiplas , Metiltransferases , Humanos , Mutação , Genótipo , Fenótipo , Epigênese Genética , Enzimas de Conjugação de Ubiquitina/genética , Proteínas de Ciclo Celular/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Culina/genética
4.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38263533

RESUMO

The KMT2D variant-caused Kabuki syndrome (KS) is characterized by short stature as a prominent clinical characteristic. The initiation and progression of body growth are fundamentally influenced by chondrocyte proliferation. Uncertainty persists regarding the possibility that KMT2D deficiency affects growth by impairing chondrocyte proliferation. In this study, we used the CRISPR/Cas13d technique to knockdown kmt2d in zebrafish embryos and lentivirus to create a stable Kmt2d gene knockdown cell line in chondrocytes (ATDC5 cells). We also used CCK8 and flow cytometric studies, respectively, to determine proliferation and cell cycle state. The relative concentrations of phosphorylated Akt (ser473), phosphorylated ß-catenin (ser552), and cyclin D1 proteins in chondrocytes and zebrafish embryos were determined by using western blots. In addition, Akt inhibition was used to rescue the phenotypes caused by kmt2d deficiency in chondrocytes, as well as a zebrafish model that was generated. The results showed that a knockdown of kmt2d significantly decreased body length and resulted in aberrant cartilage development in zebrafish embryos. Furthermore, the knockdown of Kmt2d in ATDC5 cells markedly increased proliferation and accelerated the G1/S transition. In addition, the knockdown of Kmt2d resulted in the activation of the Akt/ß-catenin signaling pathway in ATDC5 cells. Finally, Akt inhibition could partly rescue body length and chondrocyte development in the zebrafish model. Our study demonstrated that KMT2D modulates bone growth conceivably via regulation of the Akt/ß-catenin pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , beta Catenina , Animais , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células/genética , Condrócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Via de Sinalização Wnt/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Yi Chuan ; 45(9): 754-764, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731230

RESUMO

Global climate change and population growth pose a serious threat to world food security. The current crops varieties will be insufficient to meet food needs in the future, and there is an urgent need for high yielding and quality crops varieties with strong environmental adaptability. The rapid de novo domestication of wild species to create new germplasm that can be applied to crop breeding is a new strategy for ensuring food security. The flowering time is an important factor in determining the crop planting area and yield, and is a trait that is often selected in crop domestication. At present, the modification of flowering traits by de novo domestication is usually achieved by direct editing of the major genes that control flowering in crop, which are very limited in number and relatively homogeneous in function. Floral transition is regulated by the complex network of environmental and endogenous signals. Here, we propose a new strategy that using genome editing to precisely modify protein function by changing protein phase separation capacity of important proteins that regulate expression of flowering genes, which may provide new options for the design of flowering traits in de novo domestication.


Assuntos
Domesticação , Melhoramento Vegetal , Produtos Agrícolas/genética , Citoplasma , Edição de Genes
6.
mBio ; 14(3): e0339522, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37184399

RESUMO

The two-component system (TCS) PhoPQ has been demonstrated to be crucial for the formation of resistance to quinolones and cephalosporins in Salmonella Enteritidis (S. Enteritidis). However, the mechanism underlying PhoPQ-mediated antibiotic resistance formation remains poorly understood. Here, it was shown that PhoP transcriptionally regulated an assortment of genes associated with envelope homeostasis, the osmotic stress response, and the redox balance to confer resistance to quinolones and cephalosporins in S. Enteritidis. Specifically, cells lacking the PhoP regulator, under nalidixic acid and ceftazidime stress, bore a severely compromised membrane on the aspects of integrity, fluidity, and permeability, with deficiency to withstand osmolarity stress, an increased accumulation of intracellular reactive oxygen species, and dysregulated redox homeostasis, which are unfavorable for bacterial survival. The phosphorylated PhoP elicited transcriptional alterations of resistance-associated genes, including the outer membrane porin ompF and the aconitate hydratase acnA, by directly binding to their promoters, leading to a limited influx of antibiotics and a well-maintained intracellular metabolism. Importantly, it was demonstrated that the cavity of the PhoQ sensor domain bound to and sensed quinolones/cephalosporins via the crucial surrounding residues, as their mutations abrogated the binding and PhoQ autophosphorylation. This recognition mode promoted signal transduction that activated PhoP, thereby modulating the transcription of downstream genes to accommodate cells to antibiotic stress. These findings have revealed how bacteria employ a specific TCS to sense antibiotics and combat them, suggesting PhoPQ as a potential drug target with which to surmount S. Enteritidis. IMPORTANCE The prevalence of quinolone and cephalosporin-resistant S. Enteritidis is of increasing clinical concern. Thus, it is imperative to identify novel therapeutic targets with which to treat S. Enteritidis-associated infections. The PhoPQ two-component system is conserved across a variety of Gram-negative pathogens, by which bacteria adapt to a range of environmental stimuli. Our earlier work has demonstrated the importance of PhoPQ in the resistance formation in S. Enteritidis to quinolones and cephalosporins. In the current work, we identified a global profile of genes that are regulated by PhoP under antibiotic stresses, with a focus on how PhoP regulated downstream genes, either positively or negatively. Additionally, we established that PhoQ sensed quinolones and cephalosporins in a manner of directly binding to them. These identified genes and pathways that are mediated by PhoPQ represent promising targets for the development of a drug potentiator with which to neutralize antibiotic resistance in S. Enteritidis.


Assuntos
Quinolonas , Salmonella enteritidis , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo , Transcrição Gênica , Quinolonas/farmacologia , Resistência às Cefalosporinas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Regulação Bacteriana da Expressão Gênica
7.
aBIOTECH ; 4(1): 72-82, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37220538

RESUMO

The reproductive success of flowering plants, which directly affects crop yield, is sensitive to environmental changes. A thorough understanding of how crop reproductive development adapts to climate changes is vital for ensuring global food security. In addition to being a high-value vegetable crop, tomato is also a model plant used for research on plant reproductive development. Tomato crops are cultivated under highly diverse climatic conditions worldwide. Targeted crosses of hybrid varieties have resulted in increased yields and abiotic stress resistance; however, tomato reproduction, especially male reproductive development, is sensitive to temperature fluctuations, which can lead to aborted male gametophytes, with detrimental effects on fruit set. We herein review the cytological features as well as genetic and molecular pathways influencing tomato male reproductive organ development and responses to abiotic stress. We also compare the shared features among the associated regulatory mechanisms of tomato and other plants. Collectively, this review highlights the opportunities and challenges related to characterizing and exploiting genic male sterility in tomato hybrid breeding programs.

8.
J Plant Res ; 136(3): 383-396, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36952116

RESUMO

Glycosyltransferases (GTs) regulate many physiological processes and stress responses in plants. However, little is known about the function of GT in rice development. In this study, molecular analyses revealed that the expression of a rice GT gene (Cold-Upregulated Glycosyltransferase Gene 1, CUGT1) is developmentally controlled and stress-induced. OsCUGT1 was knocked out by using the clustered regularly interspaced short palindromic repeats (CRISPR) system to obtain the mutant oscugt1, which showed a severe dwarf and sterility phenotype. Further cytological analyses indicated that the dwarfism seen in the oscugt1 mutant might be caused by fewer and smaller cells. Histological pollen analysis suggests that the spikelet sterility in oscugt1 mutants may be caused by abnormal microsporogenesis. Moreover, multiple transgenic plants with knockdown of OsCUGT1 expression through RNA interference were obtained, which also showed obvious defects in plant height and fertility. RNA sequencing revealed that multiple biological processes associated with phenylpropanoid biosynthesis, cytokinin metabolism and pollen development are affected in the oscugt1 mutant. Overall, these results suggest that rice OsCUGT1 plays an essential role in rice development.


Assuntos
Infertilidade , Oryza , Oryza/genética , Fertilidade/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
9.
mSphere ; 7(6): e0038322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36286534

RESUMO

The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates ß-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.


Assuntos
Anti-Infecciosos , Quinolonas , Humanos , Salmonella enteritidis/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Anti-Infecciosos/farmacologia , Salmonella typhimurium/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Cefalosporinas , Quinolonas/farmacologia , Quinolonas/metabolismo
10.
Front Chem ; 10: 1053227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311432

RESUMO

Eucommia ulmoides Oliv. (Duzhong), a valued traditional herbal medicine in China, is rich in antibacterial proteins and is effective against a variety of plant pathogens. Fusarium oxysporum is a pathogenic fungus that infects plant roots, resulting in the death of the plant. In this study, transcriptomic and proteomic analyses were used to explore the molecular mechanism of E. ulmoides counteracts F. oxysporum infection. Transcriptomic analysis at 24, 48, 72, and 96 h after inoculation identified 17, 591, 1,205, and 625 differentially expressed genes (DEGs), while proteomics identified were 66, 138, 148, 234 differentially expressed proteins (DEPs). Meanwhile, GO and KEGG enrichment analyses of the DEGs and DEPs showed that they were mainly associated with endoplasmic reticulum (ER), fructose and mannose metabolism, protein processing in the ER, type II diabetes mellitus, the ribosome, antigen processing and presentation, and the phagosome. In addition, proteome and transcriptome association analysis and RT-qPCR showed that the response of E. ulmoides to F. oxysporum was likely related to the unfolded protein response (UPR) of the ER pathway. In conclusion, our study provided a theoretical basis for the control of F. oxysporum.

11.
Plant Sci ; 320: 111201, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643623

RESUMO

To explore the molecular mechanisms underlying plant height regulation, we isolated and characterized a stably inherited semi-dwarf mutant bgsd-2 from the ethane methyl sulfonate (EMS) mutant progeny of 'Ping Tang Wild-type (PTWT)', a rice (Oryza sativa ssp. japonica) landrace in Guizhou. Transcriptome sequencing and qRT-PCR analyses showed that a number of cellulose and lignin-related genes involved in cell wall biogenesis were substantially downregulated in bgsd-2. MutMap-based cloning revealed the occurrence of a single amino acid substitution in the LOC_Os01g51300 gene, belonging to the MSI1 (multicopy suppressor of IRA1) member OsRBAP1. The bgsd-2 mutation occurred in the 3rd exon of OsRBAP1, resulting in a nonsense mutation of a codon shift from glycine (G) to glutamic acid (E) at residue 65. Protein localization analysis uncovered that the OsRBAP1 gene encodes a nuclear-localized protein and that the mutation in bgsd-2 may affect the stability of the OsRBAP1 protein. The CRISPR/Cas9 system was used to switch off OsRBAP1 in PTWT to obtain the knockout mutant osrbap1, which exhibited a severe reduction in height and fertility. Cytological observations suggest that the dwarfism of osrabp1 may be caused by reduced cell size and numbers, and that male sterility may be due to abnormal microspore development. Transcriptome analysis revealed that OsRBAP1 defects can repress the expression of numerous essential genes, which regulate multiple developmental processes in plants. Altogether, our results suggest that OsRBAP1 plays an important role in the regulation of rice height and spikelet fertility.


Assuntos
Oryza , Clonagem Molecular , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628116

RESUMO

Lodging resistance of rice (Oryza sativa L.) has always been a hot issue in agricultural production. A brittle stem mutant, osbc17, was identified by screening an EMS (Ethylmethane sulfonate) mutant library established in our laboratory. The stem segments and leaves of the mutant were obviously brittle and fragile, with low mechanical strength. Examination of paraffin sections of flag leaf and internode samples indicated that the number of cell layers in mechanical tissue of the mutant was decreased compared with the wild type, Pingtangheinuo, and scanning electron microscopy revealed that the mechanical tissue cell walls of the mutant were thinner. Lignin contents of the internodes of mature-stage rice were significantly lower in the mutant than in the wild type. By the MutMap method, we found candidate gene OsBC17, which was located on rice chromosome 2 and had a 2433 bp long coding sequence encoding a protein sequence of 810 amino acid residues with unknown function. According to LC-MS/MS analysis of intermediate products of the lignin synthesis pathway, the accumulation of caffeyl alcohol in the osbc17 mutant was significantly higher than in Pingtangheinuo. Caffeyl alcohol can be polymerized to the catechyl lignin monomer by laccase ChLAC8; however, ChLAC8 and OsBC17 are not homologous proteins, which suggests that the osbc17 gene is involved in this process by regulating laccase expression.


Assuntos
Oryza , Alelos , Cromatografia Líquida , Lacase/metabolismo , Lignina/metabolismo , Oryza/genética , Oryza/metabolismo , Fenótipo , Espectrometria de Massas em Tandem
13.
Genome Biol ; 23(1): 78, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287709

RESUMO

BACKGROUND: Paralogs that arise from gene duplications during genome evolution enable genetic redundancy and phenotypic robustness. Variation in the coding or regulatory sequence of paralogous transcriptional regulators diversifies their functions and relationships, which provides developmental robustness against genetic or environmental perturbation. The fate transition of plant shoot stem cells for flowering and reproductive success requires a robust transcriptional control. However, how paralogs function and interact to achieve such robustness is unknown. RESULTS: Here, we explore the genetic relationship and protein behavior of ALOG family transcriptional factors with diverse transcriptional abundance in shoot meristems. A mutant spectrum covers single and higher-order mutant combinations of five ALOG paralogs and creates a continuum of flowering transition defects, showing gradually enhanced precocious flowering, along with inflorescence simplification from wild-type-like to progressively fewer flowers until solitary flower with sterile floral organs. Therefore, these paralogs play unequal roles and act together to achieve a robust genetic canalization. All five proteins contain prion-like intrinsically disordered regions (IDRs) and undergo phase separation. Accumulated mutations following gene duplications lead to IDR variations among ALOG paralogs, resulting in divergent phase separation and transcriptional regulation capabilities. Remarkably, they retain the ancestral abilities to assemble into a heterotypic condensate that prevents precocious activation of the floral identity gene ANANTHA. CONCLUSIONS: Our study reveals a novel genetic canalization mechanism enabled by heterotypic transcriptional condensates formed by paralogous protein interactions and phase separation, uncovering the molecular link between gene duplication caused IDR variation and robust transcriptional control of stem cell fate transition.


Assuntos
Príons , Solanum lycopersicum , Flores/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Corpos Nucleares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Príons/genética , Príons/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
J Assist Reprod Genet ; 38(10): 2641-2650, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34718923

RESUMO

BACKGROUND: Decidualization is critical for embryo implantation and the success of pregnancy; however, the mechanisms underlying this process remain largely unknown. MATERIALS AND METHODS: In the present study, RNA sequencing was used to detect the expression levels of transducer of ERBB2/1(TOB1) in endometrial samples derived from proliferative and secretory phases. A decidualization model was induced using the combination of estrogen (E2) and progestin (P4) in human endometrial stromal cells (HESCs). The cell counting kit-8 assay was used to detect the viability of HESCs. Related proteins were detected by qPCR and western blot. RESULT: The results indicated that TOB1 expression was upregulated in the secretory endometrial samples compared with the corresponding expression observed in the proliferative samples. The expression levels of TOB1 and Notch1 were markedly increased in E2P4-treated HESCs compared with those in the control cells. Treatment with E2P4 strongly suppressed the proliferation of HESCs and induced a G1-phase cell cycle arrest. These effects were abolished by knockdown of TOB1 or treatment with of the cells with the Notch inhibitor N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester. CONCLUSIONS: Therefore, these findings highlighted an important role for TOB1/Notch signaling in E2P4-induced decidualization in HESCs, which may provide novel targets for improving the endometrial receptivity.


Assuntos
Decídua/citologia , Endométrio/citologia , Estrogênios/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Progesterona/farmacologia , Receptor Notch1/metabolismo , Células Estromais/citologia , Proteínas Supressoras de Tumor/metabolismo , Adulto , Decídua/efeitos dos fármacos , Decídua/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Progestinas/farmacologia , Receptor Notch1/genética , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Proteínas Supressoras de Tumor/genética
16.
Int J Biol Macromol ; 190: 72-85, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480907

RESUMO

Lignin is the only renewable aromatic material in nature and contains a large number of oxygen-containing functional groups. High-value and green utilization of "lignin-to-chemicals" can be realized via using lignin to produce fine chemicals such as phenols and carboxylic acids, which can not only reduce the waste of lignin in the process of lignocellulosic biomass treatment, but gradually make the substitution of traditional fossil fuels come true. The hydrogenolysis process under catalysis of metal catalyst has high product selectivity and less impurity, which is suitable for the production of same type or single fine chemicals. Hydrogenolysis of lignin via metal catalysts to produce lignin oil, and further modification of functional groups (e.g. methoxyl, alkyl and hydroxyl group) of depolymerized monomers in the bio-oil to yeild phenols and terephthalic acid are reviewed, and catalytic mechanisms are briefly summarized in this paper. Finally, the problems of lignin catalytic conversion existing currently are investigated, and the future development of this field is also prospected.


Assuntos
Hidrogênio/química , Lignina/química , Metais/química , Fenóis/química , Ácidos Ftálicos/química , Catálise
17.
Pathol Oncol Res ; 27: 633480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257601

RESUMO

Background: We evaluated the prognostic value of C-reactive protein/albumin (CAR) and systemic immune-inflammation index (SII), which we calculated as neutrophil × platelet/lymphocyte) in patients with colorectal liver metastasis (CRLM) after curative resection. Methods: We retrospectively enrolled 283 consecutive patients with CRLM who underwent curative resection between 2006 and 2016. We determined the optimal cutoff values of CAR and SII using receiver operating curve (ROC) analysis. Overall survival (OS)- and recurrence-free survival (RFS)-related to CAR and SII were analyzed using the log-rank test and multivariate Cox regression methods. Results: We found that a high CAR was significantly associated with poor OS (P < 0.001) and RFS (P = 0.008) rates compared with a low CAR; a high SII was significantly associated with poor RFS (P = 0.003) rates compared with a low SII. The multivariate analysis indicated that CAR was an independent predictor of OS (hazard ratio [HR] = 2.220; 95% confidence interval [CI] = 1.387-3.550; P = 0.001) and RFS (HR = 1.494; 95% CI = 1.086-2.056; P = 0.014). The SII was an independent predictor of RFS (HR = 1.973; 95% CI = 1.230-3.162; P = 0.005) in patients with CRLM. Conclusion: We proved that CAR was an independent predictor of OS and RFS in patients with CRLM who underwent curative resection, and that the prognostic value of CAR was superior to that of SII.


Assuntos
Albuminas/metabolismo , Plaquetas/patologia , Proteína C-Reativa/metabolismo , Neoplasias Colorretais/patologia , Inflamação/imunologia , Neoplasias Hepáticas/secundário , Linfócitos/patologia , Neutrófilos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/cirurgia , Feminino , Seguimentos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
18.
Nat Chem Biol ; 17(5): 549-557, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33633378

RESUMO

How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced H2O2 in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene ANANTHA to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , RNA de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hidroponia/métodos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Oxirredução , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Protoplastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Espécies Reativas de Oxigênio/uso terapêutico , S-Adenosilmetionina/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-33281917

RESUMO

OBJECTIVE: As a noninvasive and nonpharmacological therapeutic approach, superficial acupuncture (SA) is a special method of acupuncture. In this study, using nonlinear dynamics and multivariate statistics, we studied the electroencephalography (EEG) of primary insomnia under SA intervention to investigate how brain regions change. METHOD: This study included 30 adults with primary insomnia. They underwent superficial acupuncture at the Shangen acupoint. The EEG signals were collected for 10 minutes at each state, including the resting state, the intervention state, and the postintervention state. The data were conducted using nonlinear dynamics (including approximate entropy (ApEn) and correlation dimension (CD)) and multivariate statistics. RESULT: The repeated-measures ANOVA results showed that both ApEn and CD values were not significantly different at the three states (p > 0.05). The paired t-test results showed that the ApEn values of electrodes O2 (the right occipital lobe) at the postintervention state have decreased, compared with the resting state (p < 0.05), and no difference was detected in CD (p > 0.05). The cluster analysis results of ApEn showed that patients' EEG has changed from the right prefrontal lobe (electrode Fp2) to the right posterior temporal lobe (electrode T6) and finally to the right occipital lobe (electrode O2), before, during, and after the SA intervention. In addition, the factor analysis results of CD revealed that patients' EEG of all brain regions except for the occipital lobes has changed to the frontal lobes and anterior temporal and frontal lobes from pre- to postintervention. CONCLUSION: SA activated the corresponding brain regions and reduced the complexity of the brain involved. It is feasible to use nonlinear dynamics analysis and multivariate statistics to examine the effects of SA on the human brain.

20.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32463098

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is considered as an endogenous negative regulator of renin-angiotensin system (RAS), exerting multiple cardiovascular protective roles. Whether mechanical stretch modulates ACE2 expression remains unknown. The present study aimed at investigating whether ACE2 is involved in physiological stretch (10% elongation, 1 Hz) mediated cellular functions and the underlying mechanism. Cultured human aortic smooth muscle cells (HASMCs) were exposed to 10% stretch for indicated time, and real-time PCR and Western blot analysis showed 10% stretch increased ACE2 expression and activity significantly compared with static conditions and increased Ang-(1-7) level, but decreased Ang II level; Brdu incorporation assay and Scratch test showed that ACE2 was involved in the inhibition of HASMCs proliferation and migration by 10% stretch; the Dual-Luciferase Reporter Assay demonstrated that 10% increased ACE2 promoter activity, but had no effect on ACE2 mRNA stability; kinase inhibition study and Electrophoretic mobility shift assay (EMSA) showed that JNK1/2 and PKCßII pathway, as well as their downstream transcription factors, AP-1 and NF-κB, were involved in 10% stretch induced ACE2 expression. In conclusion, our study indicates ACE2 is a mechanosensitive gene, and may represent a potential therapeutic target for mechanical forces related vascular diseases.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , Movimento Celular , Proliferação de Células , Mecanotransdução Celular , Fusos Musculares/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Células Cultivadas , Indução Enzimática , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , NF-kappa B/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteína Quinase C beta/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...