RESUMO
Salmonella enterica serovar Typhi (S. Typhi) is a human enteropathogen that can survive in macrophages and cause systemic infection. Autophagy and inflammation are two important immune responses of macrophages that contribute to the elimination of pathogens. However, Salmonella has derived many strategies to evade inflammation and autophagy. This study investigated inflammation-related NF-κB signaling pathways and autophagy in S. Typhi-infected macrophages. RNA-seq and quantitative real-time PCR indicated that mRNA levels of NF-κB signaling pathway and autophagy-related genes were dynamically influenced in S. Typhi-infected macrophages. Western blots revealed that S. Typhi activated the NF-κB signaling pathway and induced the expression of inhibitor protein IκBζ. In addition, S. Typhi enhanced autophagy during early stages of infection and may inhibit autophagy during late stages of infection. Thus, we propose that S. Typhi can influence the NF-κB signaling pathway and autophagy in macrophages.
Assuntos
NF-kappa B , Salmonella typhi , Autofagia , Humanos , Inflamação , Macrófagos/microbiologia , NF-kappa B/genética , Salmonella typhi/genéticaRESUMO
Salmonella enterica serovar Typhi z66-positive strains have two different flagellin genes, fliC:d/j and fljB:z66, located on the chromosome and on a linear plasmid, respectively. To investigate the mechanism underlying the expressional regulation of fljB:z66, gene deletion mutants of the regulators FliA, FlhDC, and OmpR were constructed in this study. The expression levels of fliC and fljB:z66 were analyzed by qRT-PCR in the wild-type strain and mutants at high and low osmolarity. The results show that the expression levels of both fljB:z66 and fliC were greatly reduced in fliA and flhDC mutants under both high and low osmotic conditions. In the ompR mutant, the expression levels of fljB:z66, fliC, fliA, and flhD were increased at low osmotic conditions. SDS-PAGE and western blotting analysis of the secreted proteins revealed that the FljB:z66 was almost absent in the fliA and flhDC mutants at both high and low osmolarity. In the wild-type strain, the fljB:z66 was more highly expressed under high-osmolarity conditions than under low-osmolarity conditions. However, this difference in expression disappeared in the ompR mutant. Translational expression assay of FljB:z66 showed that the FljB:z66 expression was decreased in ompR mutant at both low and high osmolarity. These results suggest that the expression of fljB:z66 in S. enterica serovar Typhi is dependent on FliA and FlihDC, and OmpR can regulate the expression and secretion of FljB:z66 in different osmolarity.
Assuntos
Western Blotting , Movimento Celular , Flagelina , Expressão Gênica , Técnicas In Vitro , Mutagênese , Reação em Cadeia da Polimerase , Plasmídeos/genética , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Métodos , Concentração Osmolar , Métodos , VirulênciaRESUMO
Salmonella enterica serovar Typhi z66-positive strains have two different flagellin genes, fliC:d/j and fljB:z66, located on the chromosome and on a linear plasmid, respectively. To investigate the mechanism underlying the expressional regulation of fljB:z66, gene deletion mutants of the regulators FliA, FlhDC, and OmpR were constructed in this study. The expression levels of fliC and fljB:z66 were analyzed by qRT-PCR in the wild-type strain and mutants at high and low osmolarity. The results show that the expression levels of both fljB:z66 and fliC were greatly reduced in fliA and flhDC mutants under both high and low osmotic conditions. In the ompR mutant, the expression levels of fljB:z66, fliC, fliA, and flhD were increased at low osmotic conditions. SDS-PAGE and western blotting analysis of the secreted proteins revealed that the FljB:z66 was almost absent in the fliA and flhDC mutants at both high and low osmolarity. In the wild-type strain, the fljB:z66 was more highly expressed under high-osmolarity conditions than under low-osmolarity conditions. However, this difference in expression disappeared in the ompR mutant. Translational expression assay of FljB:z66 showed that the FljB:z66 expression was decreased in ompR mutant at both low and high osmolarity. These results suggest that the expression of fljB:z66 in S. enterica serovar Typhi is dependent on FliA and FlihDC, and OmpR can regulate the expression and secretion of FljB:z66 in different osmolarity.
RESUMO
Salmonella enterica serovar Typhi z66-positive strains have two different flagellin genes, fliC:d/j and fljB:z66, located on the chromosome and on a linear plasmid, respectively. To investigate the mechanism underlying the expressional regulation of fljB:z66, gene deletion mutants of the regulators FliA, FlhDC, and OmpR were constructed in this study. The expression levels of fliC and fljB:z66 were analyzed by qRT-PCR in the wild-type strain and mutants at high and low osmolarity. The results show that the expression levels of both fljB:z66 and fliC were greatly reduced in fliA and flhDC mutants under both high and low osmotic conditions. In the ompR mutant, the expression levels of fljB:z66, fliC, fliA, and flhD were increased at low osmotic conditions. SDS-PAGE and western blotting analysis of the secreted proteins revealed that the FljB:z66 was almost absent in the fliA and flhDC mutants at both high and low osmolarity. In the wild-type strain, the fljB:z66 was more highly expressed under high-osmolarity conditions than under low-osmolarity conditions. However, this difference in expression disappeared in the ompR mutant. Translational expression assay of FljB:z66 showed that the FljB:z66 expression was decreased in ompR mutant at both low and high osmolarity. These results suggest that the expression of fljB:z66 in S. enterica serovar Typhi is dependent on FliA and FlihDC, and OmpR can regulate the expression and secretion of FljB:z66 in different osmolarity.