Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 37864, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897252

RESUMO

Comparisons of soil respiration (RS) and its components of heterotrophic (RH) and rhizospheric (RR) respiration during daytime and nighttime, growing (GS) and dormant season (DS), have not being well studied and documented. In this study, we compared RS, RH, RR, and their responses to soil temperature (T5) and moisture (θ5) in daytime vs. nighttime and GS vs. DS in a subalpine forest in 2011. In GS, nighttime RS and RH rates were 30.5 ± 4.4% (mean ± SE) and 30.2 ± 6.5% lower than in daytime, while in DS, they were 35.5 ± 5.5% and 37.3 ± 8.5% lower, respectively. DS RS and RH accounted for 27.3 ± 2.5% and 27.6 ± 2.6% of GS RS and RH, respectively. The temperature sensitivities (Q10) of RS and RH were higher in nighttime than daytime, and in DS than GS, while they all decreased with increase of T5. Soil C fluxes were more responsive to θ5 in nighttime than daytime, and in DS than GS. Our results suggest that the DS and nighttime RS play an important role in regulating carbon cycle and its response to climate change in alpine forests, and therefore, they should be taken into consideration in order to make accurate predictions of RS and ecosystem carbon cycle under climate change scenarios.


Assuntos
Ciclo do Carbono , Carbono/química , Mudança Climática , Ecossistema , Florestas , Consumo de Oxigênio , Estações do Ano , Solo , Temperatura
2.
Ecol Evol ; 4(5): 633-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25035803

RESUMO

Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., ß-1,4-glucosidase and cellobiohydrolase), chitin (i.e., ß-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA