Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Drug Anal ; 28(2): 273-282, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696112

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an attractive target for new cholesterol-lowering drug development. Here, we developed a method integrating ligand fishing, HPLC-Q-TOF-MS and interdisciplinary assay, aiming to explore potential PCSK9 inhibitors from mixtures rapidly and accurately. PCSK9 was expressed and purified firstly, and then the recombined PCSK9 was coated on the surface of magnetic beads (MBs). The PCSK9-immobilized MBs (PCSK9-MBs) were used for ligand fishing combined with HPLC and Q-TOF-MS/MS. Ginkgo biloba leaves (GBL), an herbal medicine widely used in Asia and Europe with good efficacy in treatment of hypercholesterolemia, were chosen as an illustration for ligand fishing. Two PCSK9 ligands were discovered from GBL and identified as kaempferol-3-O-rutinoside (1) and kaempferol 3-O-26″-(6‴-p-coumaroyl) glucosylrhamnoside (KCGR) (2). In order to verify fishing results and pick out more powerful PCSK9 inhibitors, molecular docking assay was further performed and KCGR was optimized to be an excellent PCSK9 inhibitor by the confirmation of affinity and activity bioassay. These results suggested that the developed approach could be applied to screen and analysis potential bioactive constituents from mixtures, which may improve the efficiency of drug discovery. Moreover, KCGR separated from GBL was expected to be a potential candidate of PCSK9 inhibitors.

2.
Molecules ; 23(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235833

RESUMO

The interaction between proprotein convertase subtilisin/kexin type 9 (PCSK9) and the low-density lipoprotein receptor (LDLR) is a promising target for the treatment of hyperc-holesterolemia. In this study, a new method based on competitive affinity and tag detection was developed, which aimed to evaluate potent natural inhibitors preventing the interaction of PCSK9/LDLR directly. Herein, natural compounds with efficacy in the treatment of hypercholesterolemia were chosen to investigate their inhibitory activities on the PCSK9/LDLR interaction. Two of them, polydatin (1) and tetrahydroxydiphenylethylene-2-O-glucoside (2), were identified as potential inhibitors for the PCSK9/LDLR interaction and were proven to prevent PCSK9-mediated LDLR degradation in HepG2 cells. The results suggested that this strategy could be applied for evaluating potential bioactive compounds inhibiting the interaction of PCSK9/LDLR and this strategy could accelerate the discovery of new drug candidates for the treatment of PCSK9-mediated hypercholesterolemia.


Assuntos
Produtos Biológicos/farmacologia , Glucosídeos/farmacologia , Inibidores de PCSK9 , Receptores de LDL/antagonistas & inibidores , Estilbenos/farmacologia , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/química , Glucosídeos/isolamento & purificação , Células Hep G2 , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Pró-Proteína Convertase 9/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA