Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 16(6): e202201677, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36519750

RESUMO

The condensation of biomass-derived molecules has been increasingly utilized as a sustainable strategy for the preparation of high-carbon precursors for high-density fuels, thus stimulating the demand for more efficient catalysts. This study concerns the synthesis of an aluminum-doped mesoporous silica sphere (Al-MSS) catalyst for the conversion of biobased furfural and 2-methylfuran into a C15 diesel precursor through a hydroxyalkylation/alkylation (HAA) reaction. A series of Al-MSS catalysts with different Si/Al ratios and calcination temperatures is prepared and extensively characterized, among which Al-MSS20-450 (Si/Al=20 : 1, calcined at 450 °C) exhibits unprecedentedly high reaction efficiency in catalyzing HAA reaction, offering a 94 % product yield at 140 °C in 20 min. The catalyst also gives high product yields across a broad temperature range from 80 °C to 140 °C with varied reaction time. Reaction kinetics reveal that both competitive substrate adsorption and temperature-dependent system viscosity affect the reaction efficiencies. Correlations between the catalytic activity and surface acid sites disclose that moderate and strong acid sites are primarily responsible for catalysis. Brønsted and Lewis acid sites are found by poisoning assays to work synergistically to catalyze the reaction, with the former being the primary sites. Finally, the catalyst displays good recycling performance, which further highlights its potential for industrial application.

2.
ChemSusChem ; 15(13): e202200237, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35363424

RESUMO

Catalytic transfer hydrogenation (CTH) with alcohols has been increasingly employed as effective tool for biomass upgrading, however, relying predominantly on secondary alcohols. Herein, for the first time skeletal CuZnAl catalysts were employed for the activation of a primary alcohol, ethanol, for the hydrogenation 5-hydroxymethylfurfual (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) under a mild condition. The catalysts were extensively characterized to reveal the structure characteristics and surface compositions. Over 90 % yield of BHMF were obtained over the optimal CuZnAl-0.5 catalyst at the reaction temperatures of 100-120 °C. Reaction kinetics indicated a competitive adsorption between HMF and ethanol on the catalyst surface, with the activation of ethanol being the rate-determining step (apparent activation energy Ea =70.9 kJ mol-1 ). Preliminary adsorption investigation using combined attenuated total reflectance infrared spectroscopy and density functional theory calculation proposed a η2 -(O,O)-aldehyde, furoxy perpendicular configuration of HMF on catalyst surface. The catalyst was further applied to the CTH of various aldehydes to the corresponding alcohols with high yields, demonstrating the broad applicability of the current system.


Assuntos
Etanol , Furaldeído , Catálise , Furaldeído/análogos & derivados , Furaldeído/química , Hidrogenação
3.
J Biol Chem ; 298(5): 101820, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35283190

RESUMO

The cooperation between the actin and microtubule (MT) cytoskeletons is important for cellular processes such as cell migration and muscle cell development. However, a full understanding of how this cooperation occurs has yet to be sufficiently developed. The MT plus-end tracking protein CLIP-170 has been implicated in this actin-MT coordination by associating with the actin-binding signaling protein IQGAP1 and by promoting actin polymerization through binding with formins. Thus far, the interactions of CLIP-170 with actin were assumed to be indirect. Here, we demonstrate using high-speed cosedimentation assays that CLIP-170 can bind to filamentous actin (F-actin) directly. We found that the affinity of this binding is relatively weak but strong enough to be significant in the actin-rich cortex, where actin concentrations can be extremely high. Using CLIP-170 fragments and mutants, we show that the direct CLIP-170-F-actin interaction is independent of the FEED domain, the region that mediates formin-dependent actin polymerization, and that the CLIP-170 F-actin-binding region overlaps with the MT-binding region. Consistent with these observations, in vitro competition assays indicate that CLIP-170-F-actin and CLIP-170-MT interactions are mutually exclusive. Taken together, these observations lead us to speculate that direct CLIP-170-F-actin interactions may function to reduce the stability of MTs in actin-rich regions of the cell, as previously proposed for MT end-binding protein 1.


Assuntos
Actinas , Microtúbulos , Actinas/metabolismo , Forminas , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo
4.
Anal Chem ; 92(1): 599-602, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31815449

RESUMO

A facile method for the quick discovery and quantification of isonitrile compounds from microbial cultures was established based on the isonitrile-tetrazine click reaction. This method was successfully applied to the rediscovery of diisonitrile antibotic SF2768 from an unknown strain Streptomyces tsukubensis. Finally, an in situ reduction further enabled bioorthogonal ligation of primary and secondary isonitriles for the first time.


Assuntos
Produtos Biológicos/análise , Nitrilas/análise , Streptomyces/química , Tetrazóis/química , Química Click , Estrutura Molecular
5.
Nanomaterials (Basel) ; 9(8)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387334

RESUMO

The development of an efficient solid catalyst for Friedel-Crafts (FC) reactions is of great importance to organic synthetic chemistry. Herein, we reported the hafnium-doped mesoporous silica catalyst Hf/SBA-15 and its first use for Friedel-Crafts alkylation reactions. Catalysts with different Si/Hf ratios were prepared and characterized, among which Hf/SBA-15(20) (Si/Hf = 20:1) was the most active catalyst, offering up to 99.1% benzylated product under mild reaction conditions. The influences of reaction conditions on the product were systematically investigated and compared. Pyridine-IR characterization of the catalyst showed that Lewis acid formed the primary active sites for the Friedel-Crafts alkylation reaction. X-ray photoelectron spectroscopy (XPS) characterization revealed that the electron shift from the Hf center to the silica framework resulted in a more active Lewis metal center for FC reactions. Moreover, the catalyst was successfully applied to the alkylation reaction with different alcohols and aromatic compounds. Finally, the Hf/SBA-15(20) catalyst also showed good recyclability in the recycling runs, demonstrating its high potential of being used for large scale FC reactions in the industry.

6.
ACS Appl Mater Interfaces ; 11(10): 9919-9924, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30785722

RESUMO

In the past decades, water tolerance has always been the long-pending key issue of sulfated solid superacids (SO42-/M xO y) toward industrial applications. Herein, we report a strategy for the facile coating of a thick tunable hydrophobic layer over SO42-/M xO y, which can significantly improve water tolerance, with negligible inhibition on the catalytic performance of SO42-/M xO y. Even after being directly immersed in water, the hydrophobic SO42-/M xO y can still maintain above 90% of original catalytic activity, whereas pristine SO42-/M xO y and control samples are almost completely deactivated. This strategy opens a new route to enhance the water tolerance of sulfated solid superacids.

7.
Angew Chem Int Ed Engl ; 57(31): 9707-9710, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29906336

RESUMO

The electron-rich isonitrile is an important functionality in bioactive natural products, but its biosynthesis has been restricted to the IsnA family of isonitrile synthases. We herein provide the first structural and biochemical evidence of an alternative mechanism for isonitrile formation. ScoE, a putative non-heme iron(II)-dependent enzyme from Streptomyces coeruleorubidus, was shown to catalyze the conversion of (R)-3-((carboxymethyl)amino)butanoic acid to (R)-3-isocyanobutanoic acid through an oxidative decarboxylation mechanism. This work further provides a revised scheme for the biosynthesis of a unique class of isonitrile lipopeptides, of which several members are critical for the virulence of pathogenic mycobacteria.


Assuntos
Carboxiliases/metabolismo , Compostos Ferrosos/metabolismo , Nitrilas/metabolismo , Oxirredutases/metabolismo , Biocatálise , Carboxiliases/química , Compostos Ferrosos/química , Modelos Moleculares , Estrutura Molecular , Nitrilas/química , Oxirredutases/química , Streptomyces/enzimologia
8.
ChemSusChem ; 10(20): 4066-4079, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28856818

RESUMO

A simple and efficient biphasic system with an earth-abundant metal salt catalyst was used to produce furfural from xylan with a high yield of up to 87.8 % under microwave conditions. Strikingly, the metal salt Al2 (SO4 )3 exhibited excellent catalytic activity for xylan conversion, owing to a combination of Lewis and Brønsted acidity and its ability to promote good phase separation. The critical role of the SO42- anion was first analyzed, which resulted in the aforementioned characteristics when combined with the Al3+ cation. The mixed solvent system with γ-valerolactone (GVL) as the organic phase provided the highest furfural yield, resulting from its good dielectric properties and dissolving capacity, which facilitated the absorption of microwave energy and promoted mass transfer. Mechanistic studies suggested that the xylan-to-furfural conversion proceeded mainly through a hydrolysis-isomerization-dehydration pathway and the hexa-coordinated Lewis acidic [Al(OH)2 (aq)]+ species were the active sites for xylose-xylulose isomerization. Detailed kinetic studies of the subreaction for the xylan conversion revealed that GVL regulates the reaction rates and pathways by promoting the rates of the key steps involved for furfural production and suppressing the side reactions for humin production. Finally, the Al2 (SO4 )3 catalyst was used for the production of furfural from several lignocellulosic feedstocks, revealing its great potential for other biomass conversions.


Assuntos
Compostos de Alúmen/química , Lactonas/química , Micro-Ondas , Solventes/química , Água/química , Xilanos/química , Catálise , Cinética
9.
Materials (Basel) ; 10(5)2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28772885

RESUMO

Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13C NMR spectroscopy (CP/MAS 13C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu2+ and Cd2+, and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu2+ and Cd2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively.

10.
ChemSusChem ; 9(23): 3330-3337, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27863073

RESUMO

The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural.


Assuntos
Furaldeído/química , Furanos/síntese química , Catálise , Cobre/química , Hidrogenação , Paládio/química , Reciclagem
11.
ChemSusChem ; 7(4): 1068-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24574062

RESUMO

The development of new catalytic systems for the conversion of biomass-derived molecules into liquid fuels has attracted much attention. We propose a non-noble bimetallic catalyst based on nickel-tungsten carbide for the conversion of the platform molecules 5-(hydroxymethyl)furfural into the liquid-fuel molecule 2,5-dimethylfuran (DMF). Different catalysts, metal ratios and reaction conditions have been tested and give rise to a 96% yield of DMF. The catalysts have been characterized and are discussed. The reaction mechanism is also explored through capture of reaction intermediates. The analysis of the reaction mixture over different catalysts is presented and helps to understand the role of nickel and tungsten carbide during the reaction.


Assuntos
Biomassa , Carbono/química , Furanos/química , Níquel/química , Compostos de Tungstênio/química , Catálise
13.
Chem Commun (Camb) ; 49(46): 5328-30, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23648801

RESUMO

A catalytic transfer hydrogenation process was developed for the production of γ-valerolactone (GVL) from ethyl levulinate (EL) and a H-donor at room temperature. Ethyl levulinate was almost quantitatively converted to γ-valerolactone. Further, a two step process for producing GVL from biomass derived platform molecules was also reported.


Assuntos
Lactonas/síntese química , Ácidos Levulínicos/química , Níquel/química , Catálise , Hidrogenação , Temperatura
14.
J Am Chem Soc ; 135(8): 3200-7, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23391267

RESUMO

In many organic reactions, the O(2) activation process involves a key step where inert ground triplet O(2) is excited to produce highly reactive singlet O(2). It remains elusive what factor induces the change in the electron spin state of O(2) molecules, although it has been discovered that the presence of noble metal nanoparticles can promote the generation of singlet O(2). In this work, we first demonstrate that surface facet is a key parameter to modulate the O(2) activation process on metal nanocrystals, by employing single-facet Pd nanocrystals as a model system. The experimental measurements clearly show that singlet O(2) is preferentially formed on {100} facets. The simulations further elucidate that the chemisorption of O(2) to the {100} facets can induce a spin-flip process in the O(2) molecules, which is achieved via electron transfer from Pd surface to O(2). With the capability of tuning O(2) activation, we have been able to further implement the {100}-faceted nanocubes in glucose oxidation. It is anticipated that this study will open a door to designing noble metal nanocatalysts for O(2) activation and organic oxidation. Another perspective of this work would be the controllability in tailoring the cancer treatment materials for high (1)O(2) production efficiency, based on the facet control of metal nanocrystals. In the cases of both organic oxidation and cancer treatment, it has been exclusively proven that the efficiency of producing singlet O(2) holds the key to the performance of Pd nanocrystals in the applications.


Assuntos
Nanopartículas , Neoplasias/terapia , Oxigênio/metabolismo , Paládio/química , Catálise , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
15.
ChemSusChem ; 5(4): 617-20, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22441826

RESUMO

Current affairs: Adiponitrile, used to produce nylon 6.6, is prepared from the renewable compound glutamic acid by an electrochemical route, involving electro-oxidative decarboxylation and Kolbe coupling reactions. The new route is an example of the use of glutamic acid as a versatile substrate in the transformation of biomass into chemicals. Also, it highlights the use of electrochemical methods in biomass conversion.


Assuntos
Técnicas de Química Sintética/métodos , Ácido Glutâmico/química , Nitrilas/química , Nitrilas/síntese química , Eletroquímica
17.
J Org Chem ; 76(3): 800-10, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21194222

RESUMO

Resin-bound organic ionic bases (RBOIBs) were developed in which tetraalkyl-ammonium or phosphonium cations are covalently attached to solid resins. The application tests showed that the performance of the tetraalkyl-ammonium-type RBOIBs is slightly better than that of the corresponding Cs salts in Cu-catalyzed C-N cross-couplings, while the tetraalkylphosphonium-type RBOIBs are significantly better than all the inorganic bases. With these newly developed RBOIBs, room-temperature Cu-catalyzed C-N coupling with various nonactivated aryl iodides and even aryl bromides can be readily accomplished. Moreover, RBOIBs can be easily recycled and reused for a number of times without much drop of activity. The good performances of RBOIBs are proposed to arise from the relatively weak binding forces between the cationic polymer backbone and basic anions, as opposed to the strong metal-anion interactions in the inorganic bases. Further applications of RBOIBs in Ni-catalyzed Suzuki-type couplings at room temperature, Cu-catalyzed C-N couplings at -30 °C, a Pd-catalyzed Heck reaction at 60 °C, and Cu-catalyzed C-S couplings at room temperature demonstrate that RBOIBs are generally applicable bases with improved performance for many other types of organic transformations.


Assuntos
Carbono/química , Cobre/química , Reagentes de Ligações Cruzadas/química , Íons/química , Sais/química , Aminas/química , Brometos/química , Catálise , Estrutura Molecular , Solventes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...