Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766152

RESUMO

Background Impact of fecal colonization by multidrug-resistant organisms (MDROs) on changes in gut microbiota and associated metabolites, as well as its role in cirrhosis-associated outcomes, has not been thoroughly investigated. Methods Eighty-eight cirrhotic patients and 22 healthy volunteers were prospectively enrolled with analysis conducted on plasma metabolites, fecal MDROs, and microbiota. Patients were followed for a minimum of one year. Predictive factors for cirrhosis-associated outcomes were identified using Cox proportional hazards regression models, and risk factors for fecal MDRO carriage were assessed using logistic regression model. Correlations between microbiota and metabolic profiles were evaluated through Spearman's rank test. Results Twenty-nine (33%) cirrhotic patients exhibited MDRO carriage, with a notably higher rate of hepatic encephalopathy (HE) in MDRO carriers (20.7% vs. 3.2%, p = 0.008). Cox regression analysis identified higher serum lipopolysaccharide levels and fecal MDRO carriage as predictors for HE development. Logistic regression analysis showed that MDRO carriage is an independent risk factor for developing HE. Microbiota analysis showed a significant dissimilarity of fecal microbiota between cirrhotic patients with and without MDRO carriage ( p = 0.033). Thirty-two metabolites exhibiting significantly different expression levels among healthy controls, cirrhotic patients with and without MDRO carriage were identified. Six of the metabolites showed correlation with specific bacterial taxa expression in MDRO carriers, with isoaustin showing significantly higher levels in MDRO carriers experiencing HE compared to those who did not. Conclusion Fecal MDRO carriage is associated with altered gut microbiota, metabolite modulation, and an elevated risk of HE occurrence within a year.

2.
Exp Gerontol ; 183: 112322, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37929293

RESUMO

BACKGROUND: Severe sarcopenia may result in severe disability. Early diagnosis is currently the key to enhancing the treatment of sarcopenia, and there is an urgent need for a highly sensitive and dependable tool to evaluate the course of early sarcopenia in clinical practice. This study aims to investigate longitudinally the early diagnosability of magnetic resonance imaging (MRI)-based fat infiltration and blood flow perfusion technology in sarcopenia progression. METHODS: 48 Sprague-Dawley rats were randomly assigned into six groups that were based on different periods of dexamethasone (DEX) injection (0, 2, 4, 6, 8, 10 days). Multimodal MRI was scanned to assess muscle mass. Grip strength and swimming exhaustion time of rats were measured to assess muscle strength and function. Immunofluorescence staining for CD31 was employed to assess skeletal muscle capillary formation, and western blot was used to detect vascular endothelial growth factor-A (VEGF-A) and muscle ring finger-1 (MuRF-1) protein expression. Subsequently, we analyzed the correlation between imaging and histopathologic parameters. A receiver operating characteristic (ROC) analysis was conducted to assess the effectiveness of quantitative MRI parameters for discriminating diagnosis in both pre- and post-modeling of DEX-induced sarcopenic rats. RESULTS: Significant differences were found in PDFF, R2* and T2 values on day 2 of DEX-induction compared to the control group, occurring prior to the MRI-CSA values and limb grip strength on day 6 of induction and swimming exhaustion time on day 8 of induction. There is a strong correlation between MRI-CSA with HE-CSA values (r = 0.67; p < 0.001), oil red O (ORO) area with PDFF (r = 0.67; p < 0.001), microvascular density (MVD) (r = -0.79; p < 0.001) and VEGF-A (r = -0.73; p < 0.001) with R2*, MuRF-1 with MRI-CSA (r = -0.82; p < 0.001). The AUC of PDFF, R2*, and T2 values used for modeling evaluation are 0.81, 0.93, and 0.98, respectively. CONCLUSION: Imaging parameters PDFF, R2*, and T2 can be used to sensitively evaluate early pathological changes in sarcopenia. The successful construction of a sarcopenia rat model can be assessed when PDFF exceeds 1.25, R2* exceeds 53.85, and T2 exceeds 33.88.


Assuntos
Sarcopenia , Ratos , Animais , Sarcopenia/diagnóstico por imagem , Sarcopenia/patologia , Fator A de Crescimento do Endotélio Vascular , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/patologia , Ratos Sprague-Dawley , Imageamento por Ressonância Magnética/métodos , Perfusão , Diagnóstico Precoce
3.
J Gerontol A Biol Sci Med Sci ; 78(10): 1799-1808, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37148322

RESUMO

The aging process is complicated and involves diverse organ dysfunction; furthermore, the biomarkers that are able to reflect biological aging are eagerly sought after to monitor the system-wide decline associated with the aging process. To address this, we performed a metabolomics analysis using a longitudinal cohort study from Taiwan (N = 710) and established plasma metabolomic age using a machine learning algorithm. The resulting estimation of age acceleration among the older adults was found to be correlated with HOMA-insulin resistance. In addition, a sliding window analysis was used to investigate the undulating decrease in hexanoic and heptanoic acids that occurs among the older adults at different ages. A comparison of the metabolomic alterations associated with aging between humans and mice implied that ω-oxidation of medium-chain fatty acids was commonly dysregulated in older subjects. Among these fatty acids, sebacic acid, an ω-oxidation product produced by the liver, was significantly decreased in the plasma of both older humans and aged mice. Notably, an increase in the production and consumption of sebacic acid within the liver tissue of aged mice was observed, along with an elevation of pyruvate-to-lactate conversion. Taken together, our study reveals that sebacic acid and metabolites of ω-oxidation are the common aging biomarkers in both humans and mice. The further analysis suggests that sebacic acid may play an energetic role in supporting the production of acetyl-CoA during liver aging, and thus its alteration in plasma concentration potentially reflects the aging process.


Assuntos
Ácidos Graxos , Fígado , Humanos , Camundongos , Animais , Idoso , Estudos Longitudinais , Ácidos Graxos/metabolismo , Fígado/metabolismo , Envelhecimento , Biomarcadores
4.
Exp Gerontol ; 172: 112053, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509297

RESUMO

Tumor necrosis factor (TNF)-α is a proinflammatory cytokine involved in the pathogenesis of sarcopenia, but its short half-life and inconsistent reproducibility limit the potential of TNF-α to be an ideal sarcopenia biomarker. Anti-TNF-α, a natural consequent autoantibody to TNF-α, is an indicator of relatively prolonged TNF-α exposure, has more stable concentrations than TNF-α and should be a better alternative as a biomarker of sarcopenia. Data from 484 participants from the I-Lan Longitudinal Aging Study were used for this study, and sarcopenia was defined by the Asian Working Group for Sarcopenia 2019 consensus. Plasma levels of anti-TNF-α were determined by a sandwich ELISA approach, and levels of TNF-α were determined by an immunoassay. Compared to nonsarcopenic participants, 43 sarcopenic participants had higher levels of anti-TNF-α (0.73 ± 0.19 vs. 0.79 ± 0.25 OD, p = 0.045). Plasma levels of anti-TNF-α were positively correlated with TNF-α (r = 0.24, p < 0.001), and plasma levels of anti-TNF-α were positively correlated with adiposity (r = 0.16, p < 0.001) and negatively correlated with lean body mass (r = -0.14, p = 0.003). Individuals with increasing levels of anti-TNF-α had higher odds of being sarcopenic (OR 5.4, 95 % CI: 1.1-25.8, p = 0.035), and these associations were stronger among women and younger adults. An association between TNF-α and sarcopenia was noted only in middle-aged adults (OR 6.2, 95 % CI: 1.8-21.7, p = 0.004). Plasma anti-TNF-α levels were positively correlated with TNF-α and were significantly associated with sarcopenia. Anti-TNF-α may be a more appropriate biomarker than TNF-α for sarcopenia, but further investigations are needed to confirm its roles in sarcopenia diagnosis and treatment response evaluation.


Assuntos
Sarcopenia , Feminino , Humanos , Pessoa de Meia-Idade , Envelhecimento , Biomarcadores , Necrose/complicações , Reprodutibilidade dos Testes , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/imunologia , Autoanticorpos
6.
Hypertens Res ; 45(3): 464-473, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34952949

RESUMO

This study aimed to identify the metabolomic alterations associated with hypertension (HTN) and the response of blood pressure (BP) to thiazide diuretics. A total of 50 participants previously untreated for HTN were prospectively recruited. After a 2-week lifestyle adjustment, 30 participants with systolic BP ≥ 140 mmHg and/or diastolic BP ≥ 90 mmHg were classified into the HTN group and prescribed hydrochlorothiazide (HCTZ) at 50 mg per day for 2 weeks. The remaining 20 participants, who had relatively normal BP, were assigned to the normotension group. Metabolomic profiles related to the response of BP to thiazide diuretics were analyzed. A total of 73 differential metabolites were found to be associated with HTN, and 27 metabolites were significantly changed upon HCTZ treatment (HCTZ-sensitive metabolites). Among the identified metabolites, 7 (aspartate, histidine, C5-DC, C5-M-DC, C14:1, phosphatidylcholine ae C34:1, and phosphatidylcholine ae C34:3) were positively associated with HTN and decreased in abundance upon HCTZ treatment (HCTZ-reduced/HTN-associated metabolites). Moreover, multivariate analysis of 20 metabolites whose baseline levels were associated with the response of BP revealed that aspartate, glutamate, lysophosphatidylcholine C16:0, lysophosphatidylcholine C20:3, and sphingomyelin C24:1 were independently related to systolic BP reduction, and lysophosphatidylcholine C20:3 was independently associated with diastolic BP reduction. In conclusion, we identified 5 metabolites independently related to BP changes with HCTZ treatment. An advanced biomarker profile of thiazide-induced metabolomic changes may provide a clue with which to further explore the complex and mixed effects of thiazide treatment in a clinical setting.


Assuntos
Hipertensão , Inibidores de Simportadores de Cloreto de Sódio , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Diuréticos/uso terapêutico , Quimioterapia Combinada , Humanos , Hidroclorotiazida/uso terapêutico , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Resultado do Tratamento
7.
Aging Cell ; 20(12): e13523, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811857

RESUMO

The liver plays a pivotal role in mammalian aging. However, the mechanisms underlying liver aging remain unclear. Cisd2 is a pro-longevity gene in mice. Cisd2 mediates lifespan and healthspan via regulation of calcium homeostasis and mitochondrial functioning. Intriguingly, the protein level of Cisd2 is significantly decreased by about 50% in the livers of old male mice. This down-regulation of Cisd2 may result in the aging liver exhibiting non-alcoholic fatty liver disease (NAFLD) phenotype. Here, we use Cisd2 transgenic mice to investigate whether maintaining Cisd2 protein at a persistently high level is able to slow down liver aging. Our study identifies four major discoveries. Firstly, that Cisd2 expression attenuates age-related dysregulation of lipid metabolism and other pathological abnormalities. Secondly, revealed by RNA sequencing analysis, the livers of old male mice undergo extensive transcriptomic alterations, and these are associated with steatosis, hepatitis, fibrosis, and xenobiotic detoxification. Intriguingly, a youthful transcriptomic profile, like that of young 3-month-old mice, was found in old Cisd2 transgenic male mice at 26 months old. Thirdly, Cisd2 suppresses the age-associated dysregulation of various transcription regulators (Nrf2, IL-6, and Hnf4a), which keeps the transcriptional network in a normal pattern. Finally, a high level of Cisd2 protein protects the liver from oxidative stress, and this is associated with a reduction in mitochondrial DNA deletions. These findings demonstrate that Cisd2 is a promising target for the development of therapeutic agents that, by bringing about an effective enhancement of Cisd2 expression, will slow down liver aging.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Fígado/patologia , Doenças Metabólicas/genética , Proteínas do Tecido Nervoso/metabolismo , Envelhecimento , Animais , Masculino , Camundongos
8.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681563

RESUMO

Assessing dementia conversion in patients with mild cognitive impairment (MCI) remains challenging owing to pathological heterogeneity. While many MCI patients ultimately proceed to Alzheimer's disease (AD), a subset of patients remain stable for various times. Our aim was to characterize the plasma metabolites of nineteen MCI patients proceeding to AD (P-MCI) and twenty-nine stable MCI (S-MCI) patients by untargeted metabolomics profiling. Alterations in the plasma metabolites between the P-MCI and S-MCI groups, as well as between the P-MCI and AD groups, were compared over the observation period. With the help of machine learning-based stratification, a 20-metabolite signature panel was identified that was associated with the presence and progression of AD. Furthermore, when the metabolic signature panel was used for classification of the three patient groups, this gave an accuracy of 73.5% using the panel. Moreover, when specifically classifying the P-MCI and S-MCI subjects, a fivefold cross-validation accuracy of 80.3% was obtained using the random forest model. Importantly, indole-3-propionic acid, a bacteria-generated metabolite from tryptophan, was identified as a predictor of AD progression, suggesting a role for gut microbiota in AD pathophysiology. Our study establishes a metabolite panel to assist in the stratification of MCI patients and to predict conversion to AD.


Assuntos
Doença de Alzheimer/sangue , Disfunção Cognitiva/complicações , Metabolômica/métodos , Propionatos/sangue , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/etiologia , Biomarcadores/sangue , Disfunção Cognitiva/sangue , Progressão da Doença , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade
9.
Biomedicines ; 9(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572415

RESUMO

Cisd2 (CDGSH iron sulfur domain 2) is a pro-longevity gene that extends the lifespan and health span of mice, ameliorates age-associated structural damage and limits functional decline in multiple tissues. Non-alcoholic fatty liver disease (NAFLD), which plays an important role in age-related liver disorders, is the most common liver disease worldwide. However, no medicines that can be used to specifically and effectively treat NAFLD are currently approved for this disease. Our aim was to provide pathological and molecular evidence to show that Cisd2 protects the liver from age-related dysregulation of lipid metabolism and protein homeostasis. This study makes four major discoveries. Firstly, a persistently high level of Cisd2 protects the liver from age-related fat accumulation. Secondly, proteomics analysis revealed that Cisd2 ameliorates age-related dysregulation of lipid metabolism, including lipid biosynthesis and ß-oxidation, in mitochondria and peroxisomes. Thirdly, Cisd2 attenuates aging-associated oxidative modifications of proteins. Finally, Cisd2 regulates intracellular protein homeostasis by maintaining the functionality of molecular chaperones and protein synthesis machinery. Our proteomics findings highlight Cisd2 as a novel molecular target for the development of therapies targeting fatty liver diseases, and these new therapies are likely to help prevent subsequent malignant progression to cirrhosis and hepatocellular carcinoma.

10.
Antioxidants (Basel) ; 10(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916843

RESUMO

Nonalcoholic fatty liver disease (NAFLD) and its more severe form, nonalcoholic steatohepatitis (NASH), are the most common chronic liver diseases worldwide. However, drugs to treat NAFLD and NASH are an unmet clinical need. This study sought to provide evidence that Cisd2 is a molecular target for the development of treatments targeting NAFLD and NASH. Several discoveries are pinpointed. The first is that Cisd2 dosage modulates the severity of Western diet-induced (WD-induced) NAFLD. Specifically, Cisd2 haploinsufficiency accelerates NAFLD development and exacerbates progression toward NASH. Conversely, an enhanced Cisd2 copy number attenuates liver pathogenesis. Secondly, when a WD is fed to mice, transcriptomic analysis reveals that the major alterations affecting biological processes are related to inflammation, lipid metabolism, and DNA replication/repair. Thirdly, among these differentially expressed genes, the most significant changes involve Nrf2-mediated oxidative stress, cholesterol biosynthesis, and fatty acid metabolism. Finally, increased Cisd2 expression protects the liver from oxidative stress and reduces the occurrence of mitochondrial DNA deletions. Taken together, our mouse model reveals that Cisd2 plays a crucial role in protecting the liver from WD-induced damages. The development of therapeutic agents that effectively enhance Cisd2 expression is one potential approach to the treatment of WD-induced fatty liver diseases.

11.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118954, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422617

RESUMO

CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for the disease Wolfram syndrome 2 (WFS2; MIM 604928), which is an autosomal recessive disorder showing metabolic and neurodegenerative manifestations. CISD2 protein can be localized on the endoplasmic reticulum (ER), outer mitochondrial membrane (OMM) and mitochondria-associated membrane (MAM). CISD2 plays a crucial role in the regulation of cytosolic Ca2+ homeostasis, ER integrity and mitochondrial function. Here we summarize the most updated publications and discuss the central role of CISD2 in maintaining cellular homeostasis. This review mainly focuses on the following topics. Firstly, that CISD2 has been recognized as a prolongevity gene and the level of CISD2 is a key determinant of lifespan and healthspan. In mice, Cisd2 deficiency shortens lifespan and accelerates aging. Conversely, a persistently high level of Cisd2 promotes longevity. Intriguingly, exercise stimulates Cisd2 gene expression and thus, the beneficial effects offered by exercise may be partly related to Cisd2 activation. Secondly, that Cisd2 is down-regulated in a variety of tissues and organs during natural aging. Three potential mechanisms that may mediate the age-dependent decrease of Cisd2, via regulating at different levels of gene expression, are discussed. Thirdly, the relationship between CISD2 and cell survival, as well as the potential mechanisms underlying the cell death control, are discussed. Finally we discuss that, in cancers, CISD2 may functions as a double-edged sword, either suppressing or promoting cancer development. This review highlights the importance of the CISD2 in aging and age-related diseases and identifies the urgent need for the translation of available genetic evidence into pharmaceutic interventions in order to alleviate age-related disorders and extend a healthy lifespan in humans.


Assuntos
Envelhecimento/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Envelhecimento/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Retículo Endoplasmático/metabolismo , Homeostase , Humanos , Longevidade , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/genética
12.
Biochem Biophys Res Commun ; 533(3): 467-473, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977949

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by 2019 novel coronavirus (2019-nCoV) has been a crisis of global health, whereas the effective vaccines against 2019-nCoV are still under development. Alternatively, utilization of old drugs or available medicine that can suppress the viral activity or replication may provide an urgent solution to suppress the rapid spread of 2019-nCoV. Andrographolide is a highly abundant natural product of the medicinal plant, Andrographis paniculata, which has been clinically used for inflammatory diseases and anti-viral therapy. We herein demonstrate that both andrographolide and its fluorescent derivative, the nitrobenzoxadiazole-conjugated andrographolide (Andro- NBD), suppressed the main protease (Mpro) activities of 2019-nCoV and severe acute respiratory syndrome coronavirus (SARS-CoV). Moreover, Andro-NBD was shown to covalently link its fluorescence to these proteases. Further mass spectrometry (MS) analysis suggests that andrographolide formed a covalent bond with the active site Cys145 of either 2019-nCoV Mpro or SARS-CoV Mpro. Consistently, molecular modeling analysis supported the docking of andrographolide within the catalytic pockets of both viral Mpros. Considering that andrographolide is used in clinical practice with acceptable safety and its diverse pharmacological activities that could be beneficial for attenuating COVID-19 symptoms, extensive investigation of andrographolide on the suppression of 2019-nCoV as well as its application in COVID-19 therapy is suggested.


Assuntos
Cisteína Endopeptidases/metabolismo , Diterpenos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/enzimologia , Domínio Catalítico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Diterpenos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química
13.
Quant Imaging Med Surg ; 10(1): 106-115, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31956534

RESUMO

BACKGROUND: Our study aimed to investigate the feasibility of functional magnetic resonance imaging [blood oxygen level-dependent (BOLD) imaging and T2 mapping] in monitoring the activation of lumbar paraspinal muscles before and after exercise. METHODS: The ethics committee of the First Affiliated Hospital of Kunming Medical University approved our study. Both BOLD and T2 mapping of paraspinal muscles were performed in 50 healthy, young volunteers before and after upper-body extension exercises. The movement tasks included upper body flexion and extension using a simple Roman chair. Cross-sectional area (CSA), R2*, and T2 values were measured in various lower-back anatomical regions. The SPSS22.0 statistical software was used to analyze all the data. RESULTS: Post-exercise CSA and T2 values were higher than those recorded in the pre-exercise session for the three lower-back muscles that were evaluated (iliocostalis, longissimus, and multifidus) (P<0.01). However, R2* values of these muscles were significantly lower after exercise (P<0.01). A significant difference in the R2*, CSA, and T2 values of the iliocostalis occurred between males and females (P<0.05). No statistically significant differences were evident for R2*, CSA, and T2 of the lower-back muscles between L3 and L4 levels, or between the left and right sides. The total CSA of the iliocostalis was higher than that of the multifidus and longissimus (P<0.05). CONCLUSIONS: BOLD and T2 mapping are feasible non-invasive indirect assessments of lumbar paraspinal muscle activation before and after exercise.

14.
Biochem Pharmacol ; 163: 308-320, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822403

RESUMO

Chronic myelogenous leukemia (CML) is clinically treated with imatinib, which inhibits the kinase activity of the Bcr-Abl oncoprotein. However, imatinib resistance remains a common clinical issue. Andrographolide, the major compound of the medicinal plant Andrographis paniculata, was reported to exhibit anticancer activity. In this study, we explored the therapeutic potential of andrographolide and its derivative, NCTU-322, against both imatinib-sensitive and imatinib-resistant human CML cell lines. Both andrographolide and NCTU-322 downregulated the Bcr-Abl oncoprotein in imatinib-resistant CML cells through an Hsp90-dependent mechanism similar to that observed in imatinib-sensitive CML cells. In addition, NCTU-322 had stronger effects than andrographolide on downregulation of Bcr-Abl oncoprotein, induction of Hsp90 cleavage and cytotoxicity of CML cells. Notably, andrographolide and NCTU-322 could induce differentiation, mitotic arrest and apoptosis of both imatinib-sensitive and imatinib-resistant CML cells. Finally, the anticancer activity of NCTU-322 against imatinib-resistant CML cells was demonstrated in vivo. In summary, our data demonstrated that andrographolide and NCTU-322 inhibit Bcr-abl function via a mechanism different from that of imatinib, and they induced multiple anticancer effects in both imatinib-sensitive and resistant CML cells. Our findings demonstrate that andrographolide and NCTU-322 are potential therapeutic agents again CML.


Assuntos
Antineoplásicos/farmacologia , Diterpenos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes abl/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Resistencia a Medicamentos Antineoplásicos , Genes abl/genética , Humanos , Mesilato de Imatinib/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Estrutura Molecular
15.
Mol Cell Oncol ; 5(3): e1441627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250893

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is the major risk factor leading to hepatocellular carcinoma (HCC). Cisd2 haploinsufficiency in mice causes NAFLD by disrupting Ca2+ homeostasis, indicating that CISD2 is a molecular target for the treatment of NAFLD and the prevention of HCC.

16.
Aging Cell ; 17(1)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29168286

RESUMO

Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast-twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle-specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.


Assuntos
Senilidade Prematura/metabolismo , Envelhecimento/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Doenças Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Atrofia Óptica/metabolismo , Proteômica , Animais , Proteínas de Transporte/metabolismo , Homeostase/fisiologia , Longevidade/genética , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteômica/métodos
17.
Cell Rep ; 21(8): 2198-2211, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166610

RESUMO

CISD2 is located within the chromosome 4q region frequently deleted in hepatocellular carcinoma (HCC). Mice with Cisd2 heterozygous deficiency develop a phenotype similar to the clinical manifestation of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Cisd2 haploinsufficiency causes a low incidence (20%) of spontaneous HCC and promotes HBV-associated and DEN-induced HCC; conversely, 2-fold overexpression of Cisd2 suppresses HCC in these models. Mechanistically, Cisd2 interacts with Serca2b and mediates its Ca2+ pump activity via modulation of Serca2b oxidative modification, which regulates ER Ca2+ uptake and maintains intracellular Ca2+ homeostasis in the hepatocyte. CISD2 haploinsufficiency disrupts calcium homeostasis, causing ER stress and subsequent NAFLD and NASH. Hemizygous deletion and decreased expression of CISD2 are detectable in a substantial fraction of human HCC specimens. These findings substantiate CISD2 as a haploinsufficient tumor suppressor and highlights Cisd2 as a drug target when developing therapies to treat NAFLD/NASH and prevent HCC.


Assuntos
Cálcio/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Haploinsuficiência/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Homeostase/fisiologia , Humanos , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
18.
Acta Biomater ; 51: 341-350, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110073

RESUMO

Sphingosine-1-phosphate (S1P) has been known to promote endothelial cell (EC) proliferation and protect Syndecan-1 (SDC1) from shedding, thereby maintaining this antithrombotic signal. In the present study, we investigated the effect of S1P in the construction of a functional tissue-engineered blood vessel by using human endothelial cells and decellularized human umbilical vein (DHUV) scaffolds. Both human umbilical vein endothelial cells (HUVEC) and human cord blood derived endothelial progenitor cells (EPC) were seeded onto the scaffold with or without the S1P treatment. The efficacy of re-cellularization was determined by using the fluorescent marker CellTracker CMFDA and anti-CD31 immunostaining. The antithrombotic effect of S1P was examined by the anti-aggregation tests measuring platelet adherence and clotting time. Finally, we altered the expression of SDC1, a major glycocalyx protein on the endothelial cell surface, using MMP-7 digestion to explore its role using platelet adhesion tests in vitro. The result showed that S1P enhanced the attachment of HUVEC and EPC. Based on the anti-aggregation tests, S1P-treated HUVEC recellularized vessels when grafted showed reduced thrombus formation compared to controls. Our results also identified reduced SDC1 shedding from HUVEC responsible for inhibition of platelet adherence. However, no significant antithrombogenic effect of S1P was observed on EPC. In conclusion, S1P is an effective agent capable of decreasing thrombotic risk in engineered blood vessel grafts. STATEMENT OF SIGNIFICANCE: Sphingosine-1phosphate (S1P) is a low molecular-weight phospholipid mediator that regulates diverse biological activities of endothelial cell, including survival, proliferation, cell barrier integrity, and also influences the development of the vascular system. Based on these characters, we the first time to use it as an additive during the process of a small caliber blood vessel construction by decellularized human umbilical vein and endothelial cell/endothelial progenitor. We further explored the function and mechanism of S1P in promoting revascularization and protection against thrombosis in this tissue engineered vascular grafts. The results showed that S1P could not only accelerate the generation but also reduce thrombus formation of small caliber blood vessel.


Assuntos
Prótese Vascular , Endotélio Vascular/fisiologia , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Sindecana-1/metabolismo , Trombose/patologia , Veias Umbilicais/citologia , Coagulação Sanguínea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Endotélio Vascular/efeitos dos fármacos , Imunofluorescência , Glicocálix/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Cinética , Metaloproteinase 7 da Matriz/metabolismo , Modelos Biológicos , Adesividade Plaquetária/efeitos dos fármacos , Esfingosina/farmacologia , Alicerces Teciduais/química , Veias Umbilicais/ultraestrutura
19.
Sheng Li Xue Bao ; 68(2): 148-56, 2016 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-27108901

RESUMO

The aim of the present study was to investigate the effects of minocycline on cognitive functions in neonatal rat after hypoxia exposure and the underlying mechanism. A model of hypoxic brain damage (HBD) was developed by exposing postnatal 1 day (P1) rats to systemic hypoxia. The rats were intraperitoneally injected with normal saline (Hy group) or minocycline (Hy + M group) 2 h after hypoxia exposure. Some other P1 rats that were not subjected to systemic hypoxia were used as normal control (NG group). The Y-maze test was used to evaluate learning and memory ability on postnatal day 30. Inflammatory mediators (Iba-1, IL-1ß, TNF-α and TGF-ß1), glutamate transporters (EAAT1 and EAAT2), total Tau and phosphorylated Tau (phosphorylation sites: Tyr18, Thr205, Thr231, Ser396 and Ser404) protein expressions in the hippocampus were detected by Western blot 7 d after hypoxic exposure. The results showed that hypoxia induced learning and memory impairments of the neonatal rats, and minocycline administration could reverse the effects of hypoxia. The protein expression levels of Iba-1, IL-1ß, TNF-α, EAAT2 and Tau phosphorylated at T231 were increased, but the total Tau expression was decreased in the hippocampus of the rats from Hy group 7 d after hypoxia exposure. In the hypoxia-treated rats, minocycline down-regulated Iba-1, IL-1ß, TNF-α and EAAT2 protein expressions significantly, but did not affect total Tau and phosphorylated Tau protein expressions. Our results suggest that minocycline can prevent cognitive deficits of rats with hypoxia exposure, and the underlying mechanism may involve the inhibition of neuroinflammation and dysfunctional glutamate transporters but not the regulation of the Tau hyperphosphorylation.


Assuntos
Cognição , Hipóxia , Sistema X-AG de Transporte de Aminoácidos , Animais , Animais Recém-Nascidos , Transtornos Cognitivos , Modelos Animais de Doenças , Glutamatos , Hipocampo , Inflamação , Aprendizagem , Memória , Transtornos da Memória , Minociclina , Fosforilação , Ratos , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa , Proteínas tau
20.
Hum Mol Genet ; 23(18): 4770-85, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24833725

RESUMO

CISD2 is a causative gene associated with Wolfram syndrome (WFS). However, it remains a mystery as to how the loss of CISD2 causes metabolic defects in patients with WFS. Investigation on the role played by Cisd2 in specific cell types may help us to resolve these underlying mechanisms. White adipose tissue (WAT) is central to the maintenance of energy metabolism and glucose homeostasis in humans. In this study, adipocyte-specific Cisd2 knockout (KO) mice showed impairment in the development of epididymal WAT (eWAT) in the cell autonomous manner. A lack of Cisd2 caused defects in the biogenesis and function of mitochondria during differentiation of adipocytes in vitro. Insulin-stimulated glucose uptake and secretion of adiponectin by the Cisd2 KO adipocytes were decreased. Moreover, Cisd2 deficiency increased the cytosolic level of Ca(2+) and induced Ca(2+)-calcineurin-dependent signaling that inhibited adipogenesis. Importantly, Cisd2 was found to interact with Gimap5 on the mitochondrial and ER membranes and thereby modulate mitochondrial Ca(2+) uptake associated with the maintenance of intracellular Ca(2+) homeostasis in adipocytes. Thus, it would seem that Cisd2 plays an important role in intracellular Ca(2+) homeostasis, which is required for the differentiation and functioning of adipocytes as well as the regulation of glucose homeostasis in mice.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/genética , Diferenciação Celular , Citosol/metabolismo , Proteínas de Ligação ao GTP , Glucose/metabolismo , Células HEK293 , Homeostase , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/fisiologia , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...