Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 676: 110-126, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39018804

RESUMO

Developing nanozymes for cancer therapy has attracted great attention from researchers. However, enzymes-loaded magnetic particles triggered by both a low-frequency vibrating magnetic field (VMF) and laser for inhibiting tumor growth have never been reported. Herein, we developed a magnetic nanozyme with 3D flower-like nanostructures for cancer therapy. Specifically, the flower-like nanozymes exposed to a VMF could efficiently damage the mitochondrial membrane and cell structure, and inhibit tumor growth through magneto-mechanical force. In parallel, magnetic nanozymes in a weak acid environment containing glucose could generate abundant hydrogen peroxide through glucose oxidase-catalyzed oxidation of glucose, and further significantly promote the Fenton reaction. Interestingly, both glucose oxidase- and Fenton-based catalytic reactions were significantly promoted by the VMF exposure. Flower-like magnetic nanospheres upon a near-infrared laser irradiation could also damage cancer cells and tumor tissues through photothermal effect. The cell-killing efficiency of magnetic nanozymes triggered by the VMF or laser significantly increased in comparison with that of nanozymes without exposures. Mouse tumors grown after injection with magnetic nanozymes was inhibited in a significant way or the tumors disappeared after exposure to a VMF and laser due to the synergistic effect of four major stimuli, viz., magneto-mechanical force, photothermal conversion, improved Fenton reaction, and intratumoral glucose consumption-based starvation effect. This is a great platform that may be suitable for treating many solid tumors.

2.
Biosensors (Basel) ; 14(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39056603

RESUMO

Cell dielectric property measurement holds significant potential for application in cell detection and diagnosis due to its label-free and noninvasive nature. In this study, we developed a biosensor designed to measure the permittivity of liquid samples, particularly cell suspensions at the nanoliter scale, utilizing microwave and millimeter wave coplanar waveguides in conjunction with a microchannel. This biosensor facilitates the measurement of scattering parameters within a frequency domain ranging from 1 GHz to 110 GHz. The obtained scattering parameters are then converted into dielectric constants using specific algorithms. A cell capture structure within the microchannel ensures that cell suspensions remain stable within the measurement zone. The feasibility of this biosensor was confirmed by comparison with a commercial Keysight probe. We measured the dielectric constants of three different cell suspensions (HepG2, A549, MCF-7) using our biosensor. We also counted the number of cells captured in multiple measurements for each cell type and compared the corresponding changes in permittivity. The results indicated that the real part of the permittivity of HepG2 cells is 0.2-0.8 lower than that of the other two cell types. The difference between A549 and MCF-7 was relatively minor, only 0.2-0.4. The fluctuations in the dielectric spectrum caused by changes in cell numbers during measurements were smaller than the differences observed between different cell types. Thus, the sensor is suitable for measuring cell suspensions and can be utilized for label-free, noninvasive studies in identifying biological cell suspensions.


Assuntos
Técnicas Biossensoriais , Humanos , Células Hep G2 , Células MCF-7 , Células A549 , Micro-Ondas , Suspensões
3.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893536

RESUMO

Drug-induced liver injury (DILI) is a common clinical pharmacogenic disease. In the United States and Europe, DILI is the most common cause of acute liver failure. Drugs can cause hepatic damage either directly through inherent hepatotoxic properties or indirectly by inducing oxidative stress, immune responses, and inflammatory processes. These pathways can culminate in hepatocyte necrosis. The role of the gut microecology in human health and diseases is well recognized. Recent studies have revealed that the imbalance in the gut microecology is closely related to the occurrence and development of DILI. The gut microecology plays an important role in liver injury caused by different drugs. Recent research has revealed significant changes in the composition, relative abundance, and distribution of gut microbiota in both patients and animal models with DILI. Imbalance in the gut microecology causes intestinal barrier destruction and microorganism translocation; the alteration in microbial metabolites may initiate or aggravate DILI, and regulation and control of intestinal microbiota can effectively mitigate drug-induced liver injury. In this paper, we provide an overview on the present knowledge of the mechanisms by which DILI occurs, the common drugs that cause DILI, the gut microbiota and gut barrier composition, and the effects of the gut microbiota and gut barrier on DILI, emphasizing the contribution of the gut microecology to DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA