Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 9: 922534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990970

RESUMO

Cardiac dysfunction is a common complication of sepsis with high mortality. The present study was designed to identify the effect of neutrophil-derived lipocalin-2 (LCN2) in septic cardiac dysfunction (SCD) and its potential mechanism. Wild-type (WT) and LCN2-knockout (LCN2 KO) mice were peritoneally injected with lipopolysaccharide (LPS) to induce SCD. The cardiac function was assessed 12 h after LPS injection by echocardiography. Cardiac tissue was harvested for the evaluation of malonaldehyde (MDA) and prostaglandin E synthase 2 (PTGS2) mRNA levels. LPS induced ferroptosis and SCD in mice. LCN2 deficiency attenuated cardiac injury post-LPS administration. In vitro, LCN2 expression in neutrophils increased in response to LPS. Ferroptosis of cardiomyocytes induced by conditioned medium (CM) from LPS-induced neutrophils of WT mice could be attenuated in CM from LPS-induced neutrophils of LCN2 KO mice. Exogenous LCN2 induced H9C2 cell ferroptosis via increasing labile iron pool (LIP). In conclusion, our results showed that LCN2 deficiency prevented heart dysfunction and ferroptosis in SCD mice and suggested that neutrophil-derived LCN2 might be a promising therapeutic target for SCD.

2.
Int J Biol Sci ; 18(3): 1271-1287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173552

RESUMO

Rationale: Heart failure with preserved ejection fraction (HFpEF) can arise from hypertension-induced cardiac remodeling. Monocyte/macrophage accumulation and inflammation are crucial elements in the pathogenesis of hypertension-induced cardiac remodeling. The C-X-C chemokine receptor 4 (CXCR4) is a critical regulator of the macrophage-mediated immune response. Nevertheless, the contribution of CXCR4 to macrophage phenotype and function during the progression of HFpEF remains unclear. Herein, we aimed to determine the role of macrophagic CXCR4 in heart failure with preserved ejection fraction (HFpEF). Methods: As a HFpEF model, wild type mice and myeloid-specific CXCR4 deficiency mice were subjected to pressure overload for 30 days to assess the function of macrophagic CXCR4 on cardiac function. Medium from macrophages was used to treat cardiac fibroblasts to study macrophage-to-fibroblast signaling. Results: We found circulatory CXCR4+ immune cells, mainly monocytes, markedly increased in HFpEF patients with hypertension. In the experimental HFpEF mice model, macrophages but not neutrophils represent the main infiltrating inflammatory cells in the heart, abundantly expressing CXCR4. Myeloid-specific CXCR4 deficient impeded macrophage infiltration and inflammatory response in the heart of HFpEF mice, thus ameliorating cardiac fibrosis and improving cardiac diastolic function. Furthermore, transcriptomic profiling data revealed that CXCR4 loss in macrophages exhibited a decreased transcriptional signature associated with the regulation of inflammatory response. Notably, CXCR4 significantly augmented chemokine (C­X­C) motif ligand (CXCL3) expression, which at least partly contributed to fibrosis by promoting myofibroblast differentiation. Mechanistically, the increased production of pro-inflammatory cytokines in CXCR4 expressed macrophages could be attributed to the suppression of the peroxisome proliferator-activated receptor γ (PPARγ) activity. Conclusions: Collectively, our data supported that the infiltration of CXCR4+ macrophages in the heart exacerbates hypertension-induced diastolic function by promoting pro-inflammatory cytokines production and thus may serve as a potential therapeutic target for hypertension-induced HFpEF.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Hipertensão , Animais , Citocinas , Fibroblastos/metabolismo , Hipertensão/complicações , Macrófagos/metabolismo , Camundongos , Receptores CXCR4/genética , Receptores CXCR4/uso terapêutico , Volume Sistólico/fisiologia , Função Ventricular Esquerda , Remodelação Ventricular/fisiologia
3.
J Cell Mol Med ; 25(15): 7280-7293, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34189838

RESUMO

Chemokine C-C motif ligand 7 (CCL7), a member of CC chemokine subfamily, plays pivotal roles in numerous inflammatory diseases. Hyper-activation of inflammation is an important characteristic of abdominal aortic aneurysm (AAA). Therefore, in the present study, we aimed to determine the effect of CCL7 on AAA formation. CCL7 abundance in aortic tissue and macrophage infiltration were both increased in angiotensin II (Ang II)-induced AAA mice. Ex vivo, CCL7 promoted macrophage polarization towards M1 phenotype. This effect was reversed by the blockage of CCR1, a receptor of CCL7. CCL7 up-regulated JAK2/STAT1 protein level in macrophage, and CCL7-induced M1 activation was suppressed by JAK2/STAT1 pathway inhibition. To verify the effect of CCL7 on AAA in vivo, either CCL7-neutralizing antibody (CCL7-nAb) or vehicles were intraperitoneally injected 24 hours prior to Ang II infusion and subsequently every three days for 4 weeks. CCL7-nAb administration significantly attenuated Ang II-induced luminal and external dilation as well as pathological remodelling. Immunostaining showed that CCL7-nAb administration significantly decreased aneurysmal macrophage infiltration. In conclusion, CCL7 contributed to Ang II-induced AAA by promoting M1 phenotype of macrophage through CCR1/JAK2/STAT1 signalling pathway.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Movimento Celular , Quimiocina CCL7/metabolismo , Macrófagos/metabolismo , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/patologia , Diferenciação Celular , Células Cultivadas , Quimiocina CCL7/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Janus Quinase 2/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores CCR1/metabolismo , Fator de Transcrição STAT1/metabolismo , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA