Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Liver Transpl ; 29(10): 1050-1062, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439666

RESUMO

Ischemia-reperfusion injury (IRI) remains a major cause of mortality and morbidity after liver surgery. Endoplasmic reticulum (ER) stress is a critical mechanism of inflammatory injury during hepatic IRI. In this study, we investigated the effect of sphingosine kinases 2 (SK2) on ER stress and hepatic IRI. We established hepatic IRI mice and hepatocellular hypoxia/reoxygenation in vitro model. We observed the SK2 and ER stress protein IRE1α expression. Then, we used an SK2 inhibitor and knocked down IRE1α/SK2, to observe the effect of SK2 during IRI. Our results showed that the expression of ER stress and SK2 was significantly elevated during hepatic IRI. Inhibition of SK2 ameliorated liver inflammation and reduced cell apoptosis in hepatic IRI mice. Consistently, we found that the inhibition of IRE1α also downregulated SK2 expression and reduced mitochondrial membrane permeability. Furthermore, the knockdown of SK2 could also reduce cell damage and reduce the expression of inflammatory factors but did not influence ER stress-related signaling pathway. Taken together, our results suggested that ER stress and SK2 played important and regulatory roles in hepatic IRI. Inhibition of ER stress and SK2 could significantly improve liver function after hepatic IRI.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Camundongos , Animais , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Transplante de Fígado/efeitos adversos , Fígado/metabolismo , Inflamação/complicações , Inflamação/metabolismo , Apoptose , Traumatismo por Reperfusão/etiologia
2.
Front Oncol ; 12: 952849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982948

RESUMO

Peroxidasin (PXDN), also known as vascular peroxidase-1, is a newly discovered heme-containing peroxidase; it is involved in the formation of extracellular mesenchyme, and it catalyzes various substrate oxidation reactions in humans. However, the role and specific mechanism of PXDN in tumor are unclear, and no systematic pan-cancer studies on PXDN have been reported to date. This study employed data from multiple databases, including The Cancer Genome Atlas and The Genotype-Tissue Expression, to conduct a specific pan-cancer analysis of the effects of PXDN expression on cancer prognosis. Further, we evaluated the association of PXDN expression with DNA methylation status, tumor mutation burden, and microsatellite instability. Additionally, for the first time, the relationship of PXDN with the tumor microenvironment and infiltration of fibroblasts and different immune cells within different tumors was explored, and the possible molecular mechanism of the effect was also discussed. Our results provide a comprehensive understanding of the carcinogenicity of PXDN in different tumors and suggest that PXDN may be a potential target for tumor immunotherapy, providing a new candidate that could improve cancer clinical diagnosis and treatment.

3.
Nat Neurosci ; 22(3): 421-435, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664769

RESUMO

The clearance of damaged myelin sheaths is critical to ensure functional recovery from neural injury. Here we show a previously unidentified role for microvessels and their lining endothelial cells in engulfing myelin debris in spinal cord injury (SCI) and experimental autoimmune encephalomyelitis (EAE). We demonstrate that IgG opsonization of myelin debris is required for its effective engulfment by endothelial cells and that the autophagy-lysosome pathway is crucial for degradation of engulfed myelin debris. We further show that endothelial cells exert critical functions beyond myelin clearance to promote progression of demyelination disorders by regulating macrophage infiltration, pathologic angiogenesis and fibrosis in both SCI and EAE. Unexpectedly, myelin debris engulfment induces endothelial-to-mesenchymal transition, a process that confers upon endothelial cells the ability to stimulate the endothelial-derived production of fibrotic components. Overall, our study demonstrates that the processing of myelin debris through the autophagy-lysosome pathway promotes inflammation and angiogenesis and may contribute to fibrotic scar formation.


Assuntos
Autofagia , Células Endoteliais/fisiologia , Macrófagos/fisiologia , Microvasos/fisiologia , Bainha de Mielina/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Indutores da Angiogênese , Animais , Proliferação de Células , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Fibrose , Inflamação/etiologia , Inflamação/fisiopatologia , Lisossomos/fisiologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Microvasos/patologia , Bainha de Mielina/patologia , Traumatismos da Medula Espinal/complicações , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...