Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 197: 106980, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37944835

RESUMO

The microRNAs (miRNAs) are potent regulators of tumorigenesis in various cancers, especially pancreatic cancer. The abnormal expression of miRNAs can be observed in tumor cells. Noteworthy, miRNAs could be transferred by exosomes as small extracellular vesicles in regulation of carcinogenesis. This research focused on exploring the roles and mechanisms of exosomal miR-484, derived from human bone marrow mesenchymal stem cells (hBMSCs), in the context of molecular interactions and regulation of mitochondrial metabolism. Exosomes were isolated for the examination of miR-484 expression. The impacts of hBMSCs-derived exosomal miR-484 on pancreatic cancer cells were studied using various assays. Evaluation of mitochondrial function and metabolism was performed. Wnt/MAPK pathway-related protein expression was assessed, and an in vivo tumor xenograft model was utilized to examine the functions. Our findings demonstrated a decreased miR-484 expression in pancreatic cancer cells. However, hBMSCs-derived exosomal miR-484 inhibited the proliferation and migration of these cells, while inducing apoptosis. Moreover, miR-484 led to an upsurge in reactive oxygen species production, a decrease in ATP levels, and a disruption in mitochondrial metabolism. In vivo analyses showed that hBMSCs-derived exosomal miR-484 lessened tumor size and weight, while also suppressing the expression of mitochondrial biomarkers. Further, there was a decline in ß-catenin and p-p38 protein levels both in vitro and in vivo. The addition of LiCl restored the disrupted mitochondrial metabolism. Conclusively, our results suggest that hBMSCs-derived exosomal miR-484 mitigates the malignant transformation and mitochondrial metabolism of pancreatic cancer by deactivating the Wnt/MAPK pathway.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , MicroRNAs/genética , Mitocôndrias , Pâncreas , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Pancreáticas
2.
Adv Healthc Mater ; 12(28): e2301379, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531241

RESUMO

Colon leakage is one of the most severe complications in abdominal trauma or surgery cases. It can lead to severe abdominal infection and abdominal adhesions, resulting in prolonged hospital stays and increased mortality. In this study, a photosensitive hydrogel is proposed, which can swiftly form a strong adhesion coating on the damaged colon after UV irradiation, to realize quick cure and suture-free repair of colon leakage. The newly developed biological gel consists of hyaluronic acid methacryloyl (HAMA) and hyaluronic acid o-nitroso benzaldehyde (HANB) in the optimal ratio of 3: 1, which exerts both the rapid photocuring properties of HAMA and the strong tissue adhesion properties of HANB. HAMA/HANB shows excellent adhesion stability on wet surfaces, presenting controllable mechanical properties, ductility, adhesion stability, and chemical stability; it also evades foreign body response, which relieves the degree of abdominal adhesion. The underlying mechanism for HAMA/HANB promoting wound healing in colon leakage involves the reconstruction of the colon barrier, as well as the regulation of the immune reaction and neovascularization. In all, HAMA/HANB is a promising alternative suture-free approach for repairing colon leakage; it has a reliable healing effect and is expected to be extended to clinical application for other organ injuries.


Assuntos
Ácido Hialurônico , Hidrogéis , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Hidrogéis/química , Colo , Aderências Teciduais/prevenção & controle , Aderências Teciduais/etiologia , Suturas/efeitos adversos
3.
Infect Drug Resist ; 16: 4789-4806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520454

RESUMO

Background: Antimicrobial peptides (AMPs) can act on the bacterial cell membrane to play an antibacterial role in types of drug-resistant bacteria. Therefore, AMPs have attracted more and more attention in the treatment of drug-resistant bacteria. Methods: Bibliometric analysis was employed to sort out the development and trends in the research of AMPs in the treatment of drug-resistant bacteria and map the knowledge structure for scholars. Results: Since 2010, the publications and citations in this field have exploded, indicating a growing global interest in the field of AMPs for the treatment of drug-resistant bacteria. And as major countries in this field, China and the USA had conducted very in-depth exchanges and cooperation, which had injected a steady stream of impetus into this field. Both old and new scholars have made efforts, and related fields have developed rapidly, especially in the synthesis and improvement of novel AMPs. In recent years, research directions in the field of AMPs for the treatment of drug-resistant bacteria gradually focused on the practical application, optimization of drug delivery mode, optimization of synthesis mode, screening of new AMPs and other fields, indicating that the relevant research results of AMPs for the treatment of drug-resistant bacteria had entered the actual clinical stage, with higher practical significance. Conclusion: The research history, global research status, future research hotspots, and trends of the research of AMPs in the treatment of drug-resistant bacteria were discussed in depth in this study, which can provide research references and inspiration for researchers inside and outside the related field.

4.
Microorganisms ; 11(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317214

RESUMO

The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.

5.
Bioact Mater ; 19: 251-267, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35510173

RESUMO

Inflammatory bowel disease (IBD) is a chronic, immune-mediated inflammatory disease characterized by the destruction of the structure and function of the intestinal epithelial barrier. Due to the poor remission effect and severe adverse events associated with current clinical medications, IBD remains an incurable disease. Here, we demonstrated a novel treatment strategy with high safety and effective inflammation remission via tissue-adhesive molecular coating. The molecular coating is composed of o-nitrobenzaldehyde (NB)-modified Gelatin (GelNB), which can strongly bond with -NH2 on the intestinal surface of tissue to form a thin biophysical barrier. We found that this molecular coating was able to stay on the surface of the intestine for long periods of time, effectively protecting the damaged intestinal epithelium from irritations of external intestinal metabolites and harmful flora. In addition, our results showed that this coating not only provided a beneficial environment for cell migration and proliferation to promote intestinal repair and regeneration, but also achieved a better outcome of IBD by reducing intestinal inflammation. Moreover, the in vivo experiments showed that the GelNB was better than the classic clinical medication-mesalazine. Therefore, our molecular coating showed potential as a promising strategy for the prevention and treatment of IBD.

6.
J Vis Exp ; (189)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36440878

RESUMO

Adhesive materials have become popular biomaterials in the field of biomedical and tissue engineering. In our previous work, we presented a new material - gelatin o-nitrosobenzaldehyde (gelatin-NB) - which is mainly used for tissue regeneration and has been validated in animal models of corneal injury and inflammatory bowel disease. This is a novel hydrogel formed by modifying biological gelatin with o-nitrosobenzaldehyde (NB). Gelatin-NB was synthesized by activating the carboxyl group of NB-COOH and reacting with gelatin through 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). The obtained compound was purified to generate the final product, which can be stably stored for at least 18 months. NB has a strong adhesion to -NH2 on the tissue, which can form many C = N bonds, thus increasing the adhesion of gelatin-NB to the tissue interface. The preparation process comprises steps for the synthesis of the NB-COOH group, modification of the group, synthesis of gelatin-NB, and purification of the compound. The goal is to describe the specific synthesis process of gelatin-NB in detail and to demonstrate the application of gelatin-NB to damage repair. Moreover, the protocol is presented to further strengthen and expand the nature of the material produced by the scientific community for more applicable scenarios.


Assuntos
Gelatina , Hidrogéis , Animais , Gelatina/química , Hidrogéis/química , Adesivos , Materiais Biocompatíveis/química , Engenharia Tecidual
7.
Front Endocrinol (Lausanne) ; 13: 865655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399954

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers. It is characterized by stromal richness, lack of blood supply and special metabolic reprogramming in the tumor microenvironment, which is difficult to treat and easy to metastase. Great efforts have been made to develop new drugs which can pass through the stroma and are more effective than traditional chemotherapeutics, such as ferroptosis inducers-Erastin and RSL-3. As current anti-angiogenic therapy drugs alone are suboptimal for PDAC, novel vascular disruption agents in combination with ferroptosis inducers might provide a possible solution. Here, we designed human platelet vesicles (PVs) to camouflage RSL-3 to enhance drug uptake rate by tumor cells and circulation time in vivo, deteriorating the tumor vessels and resulting in tumor embolism to cut the nutrient supply as well as causing cell death due to excessive lipid peroxidation. The RSL-3@PVs can also cause the classic ferroptosis-related change of mitochondrial morphology, with changes in cellular redox levels. Besides that, RSL-3@PVs has been proved to have great biological safety profile in vitro and in vivo. This study demonstrates the promising potential of integrating PVs and RSL-3 as a combination therapy for improving the outcome of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Ferroptose , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Humanos , Imunoterapia , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
8.
J Hematol Oncol ; 14(1): 169, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654454

RESUMO

Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.


Assuntos
Neoplasias/imunologia , RNA Longo não Codificante/imunologia , Microambiente Tumoral , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade , Redes e Vias Metabólicas , Neoplasias/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Expert Rev Proteomics ; 17(1): 11-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914820

RESUMO

Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.


Assuntos
Glicômica/métodos , Espectrometria de Massas/métodos , Animais , Humanos , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...