Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539829

RESUMO

This research evaluated the impacts of selenomethionine (Se-Met) on hepatic functions, oxidative stress, mitochondrial function, and apoptosis of piglets fed deoxynivalenol (DON)-contaminated diets. Twenty-four piglets were allocated four dietary treatments (n = 6) in a 28-day feeding trial. The four treatments included the control group, which received 0.3 mg/kg of Se (as Se-Met) without DON treatment, and the DON treatment groups received 0, 0.3, or 0.5 mg/kg Se as Se-Met. A dietary addition of 0.5 mg/kg Se improved liver pathology and reduced serum aspartate aminotransferase and lactate dehydrogenase levels in piglets fed DON-contaminated diets. Furthermore, 0.5 mg/kg Se mitigated the oxidative stress and apoptosis of piglets fed DON-contaminated diets, as indicated by the decreased reactive oxygen species level, and the down-regulated mRNA levels of NRF-1, Bax, and CASP9 in the liver. Importantly, 0.5 mg/kg Se enhanced the hepatic antioxidant capacity, as evidenced by increased hepatic total antioxidant capacity, catalase, glutathione peroxidase, and total superoxide dismutase activities, as well as the up-regulated mRNA levels of Nrf2, Gclm, NQO1, SOD1, and GPX1 in the liver. Moreover, 0.5 mg/kg Se down-regulated the p-JNK protein level in the liver of piglets fed DON-contaminated diets. Collectively, Se-Met supplementation mitigated liver dysfunction, oxidative injury, and apoptosis through enhancing antioxidant capacity and inhibiting the JNK MAPK pathway in piglets fed DON-contaminated diets.

2.
Antioxidants (Basel) ; 13(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38539889

RESUMO

Deoxynivalenol (DON) is a prevalent contaminant in feed and food, posing a serious threat to the health of both humans and animals. The pig stands as an ideal subject for the study of DON due to its recognition as the most susceptible animal to DON. In this study, the IPEC-J2 cells were utilized as an in vitro model to explore the potential of SeMet in alleviating the intestinal toxicity and oxidative injury in intestinal epithelial cells when exposed to DON. Cells were treated either with or without 4.0 µM SeMet, in combination with or without a simultaneous treatment with 0.5 µg/mL DON, for a duration of 24 h. Then, cells or related samples were analyzed for cell proliferation, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, gene expressions, and protein expressions. The results showed that SeMet mitigated the cellular toxicity caused by DON, evidenced by elevated cell proliferation and the reduced LDH release of IPEC-J2 cells in the SeMet + DON group vs. the DON group. Moreover, the SeMet treatment markedly promoted antioxidant functions and decreased the oxidative injury in IPEC-J2 cell, which is indicated by the decreased ROS level and up-regulated mRNA levels of GPX1, TXNRD1, Nrf2, and GCLC in IPEC-J2 cells in the SeMet + DON group vs. the DON group. However, in both the absence and presence of exposure to DON, the SeMet treatment did not affect the protein expression of MAPK (JNK, Erk1/2, and P38) and phosphorylated MAPK (p-JNK, p-Erk1/2, and p-P38) in IPEC-J2 cells. Collectively, SeMet alleviated the DON-induced oxidative injury in porcine intestinal epithelial cells independent of the MAPK pathway regulation.

3.
iScience ; 27(3): 109249, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38450157

RESUMO

Under conditions of dietary amino acid balance, decreasing the dietary crude protein (CP) level in pigs has a beneficial effect on meat quality. To further elucidate the mechanism, we explored the alteration of muscle fiber characteristics and key regulators related to myogenesis in the skeletal muscle of pigs fed a protein restricted diet. Compared to pigs fed a normal protein diet, dietary protein restriction significantly increased the slow-twitch muscle fiber proportion in skeletal muscle, succinic dehydrogenase (SDH) activity, the concentrations of ascorbate, biotin, palmitoleic acid, and the ratio of s-adenosylhomocysteine (SAM) to s-adenosylhomocysteine (SAH), but the fast-twitch muscle fiber proportion, lactate dehydrogenase (LDH) activity, the concentrations of ATP, glucose-6-phosphate, SAM, and SAH in skeletal muscle, and the ratio of serum triiodothyronine (T3) to tetraiodothyronine (T4) were decreased. In conclusion, we demonstrated that dietary protein restriction induced skeletal muscle fiber remodeling association the regulation of FGF21-ERK1/2-mTORC1 signaling in weaned piglets.

4.
Antioxidants (Basel) ; 12(8)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37627637

RESUMO

Kaempferol, a secondary metabolite found in plants, is a naturally occurring flavonoid displaying significant potential in various biological activities. The chemical structure of kaempferol is distinguished by the presence of phenyl rings and four hydroxyl substituents, which make it an exceptional radical scavenger. Most recently, an increasing number of studies have demonstrated the significance of kaempferol in the regulation of intestinal function and the mitigation of intestinal inflammation. The focus of the review will primarily be on its impact in terms of antioxidant properties, inflammation, maintenance of intestinal barrier function, and its potential in the treatment of colorectal cancer and obesity. Future research endeavors should additionally give priority to investigating the specific dosage and duration of kaempferol administration for different pathological conditions, while simultaneously conducting deeper investigations into the comprehensible mechanisms of action related to the regulation of aryl hydrocarbon receptor (AhR). This review intends to present novel evidence supporting the utilization of kaempferol in the regulation of gut health and the management of associated diseases.

5.
Animals (Basel) ; 13(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36899740

RESUMO

Oxidative stress and in-feed antibiotics restrictions have accelerated the development of natural, green, safe feed additives for swine and poultry diets. Lycopene has the greatest antioxidant potential among the carotenoids, due to its specific chemical structure. In the past decade, increasing attention has been paid to lycopene as a functional additive for swine and poultry feed. In this review, we systematically summarized the latest research progress on lycopene in swine and poultry nutrition during the past ten years (2013-2022). We primarily focused on the effects of lycopene on productivity, meat and egg quality, antioxidant function, immune function, lipid metabolism, and intestinal physiological functions. The output of this review highlights the crucial foundation of lycopene as a functional feed supplement for animal nutrition.

6.
Anim Nutr ; 12: 96-107, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36632620

RESUMO

Oxidative stress is a potentially critical factor that affects productive performance in gestating and lactating sows. Polyphenols are a large class of plant secondary metabolites that possess robust antioxidant capacity. All polyphenols are structurally characterized by aromatic rings with multiple hydrogen hydroxyl groups; those make polyphenols perfect hydrogen atoms and electron donors to neutralize free radicals and other reactive oxygen species. In the past decade, increasing attention has been paid to polyphenols as functional feed additives for sows. Polyphenols have been found to alleviate inflammation and oxidative stress in sows, boost their reproductivity, and promote offspring growth and development. In this review, we provided a systematical summary of the latest research advances in plant-derived polyphenols in sow nutrition, and mainly focused on the effects of polyphenols on the (1) antioxidant and immune functions of sows, (2) placental functions and the growth and development of fetal piglets, (3) mammary gland functions and the growth and development of suckling piglets, and (4) the long-term growth and development of progeny pigs. The output of this review provides an important foundation, from more than 8,000 identified plant phenols, to screen potential polyphenols (or polyphenol-enriched plants) as functional feed additives suitable for gestating and lactating sows.

7.
Antioxidants (Basel) ; 11(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36552587

RESUMO

The contamination of deoxynivalenol (DON) in feed is a global problem, which seriously threatens the productivity efficiency and welfare of farm animals and the food security of humans. Pig is the most sensitive species to DON, and is readily exposed to DON through its grain-enriched diet. The intestine serves as the first biological barrier to ingested mycotoxin, and is, therefore, the first target of DON. In the past decade, a growing amount of attention has been paid to plant-derived polyphenols as functional compounds against DON-induced oxidative stress and intestinal toxicity in pigs. In this review, we systematically updated the latest research progress in plant polyphenols detoxifying DON-induced intestinal toxicity in swine. We also discussed the potential underlying mechanism of action of polyphenols as Nrf2 activators in protecting against DON-induced enterotoxicity of swine. The output of this update points out an emerging research direction, as polyphenols have great potential to be developed as feed additives for swine to counteract DON-induced oxidative stress and intestinal toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA