RESUMO
BACKGROUND: Mucopolysaccharidosis IIIB (MPS IIIB) is a genetic disease characterized by mutations in the NAGLU gene, deficiency of α-N-acetylglucosaminidase, multiple congenital malformations and an increased susceptibility to malignancy. Because of the slow progressive nature of this disease and its atypical symptoms, the misdiagnosis of MPS IIIB is not rare in clinical practice. This misdiagnosis could be avoided by using next-generation sequencing (NGS) techniques, which have been shown to have superior performance for detecting mutations underlying rare inherited disorders in previous studies. CASE PRESENTATION: Whole exome sequencing (WES) was conducted and the putative pathogenic variants were validated by Sanger sequencing. The activity of MPS IIIB related enzyme in the patient's blood serum was assayed. A heterozygous, non-synonymous mutation (c.1562C>T, p.P521L) as well as a novel mutation (c.1705C>A, p.Q569K) were found in the NAGLU gene of the patient. The two mutations were validated by Sanger sequencing. Our data showed that this patient's c.1562C>T, p.P521L mutation in the NAGLU gene was inherited from his father and c.1705C>A, p.Q569K was from his mother. The diagnosis was further confirmed by an enzymatic activity assay after patient recall and follow-up. CONCLUSIONS: Our results describe an atypical form of MPS IIIB and illustrate the diagnostic potential of targeted WES in Mendelian disease with unknown etiology. WES could become a powerful tool for molecular diagnosis of MPS IIIB in clinical setting.
Assuntos
Acetilglucosaminidase/genética , Exoma/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mucopolissacaridose III/genética , Mutação/genética , Criança , Análise Mutacional de DNA , Humanos , Iduronidase/genética , Masculino , PrognósticoRESUMO
DREB1 of the AP2/ERF superfamily plays a key role in the regulation of plant response to low temperatures. In this study, a novel DREB1/CBF transcription factor, PnDREB1, was isolated from Iceland poppy (Papaver nudicaule), a plant adaptive to low temperature environments. It is homologous to the known DREB1s of Arabidopsis and other plant species. It also shares similar 3D structure, and conserved and functionally important motifs with DREB1s of Arabidopsis. The phylogenetic analysis indicated that the AP2 domain of PnDREB1 is similar to those of Glycine max, Medicago truncatula, and M. sativa. PnDREB1 is constitutively expressed in diverse tissues and is increased in roots. qPCR analyses indicated that PnDREB1 is significantly induced by freezing treatment as well as by abscissic acid. The expression levels induced by freezing treatment were higher in the variety with higher degree of freezing tolerance. These results suggested that PnDREB1 is a novel and functional DREB1 transcription factor involved in freezing response and possibly in other abiotic stresses. Furthermore, the freezing-induction could be suppressed by exogenous gibberellins acid, indicating that PnDREB1 might play some role in the GA signaling transduction pathway. This study provides a basis for better understanding the roles of DREB1 in adaption of Iceland poppy to low temperatures.