Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 194, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909243

RESUMO

BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.


Assuntos
Autofagia , Catepsina B , Doenças Desmielinizantes , Gotículas Lipídicas , Lisofosfatidilcolinas , Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Microglia/patologia , Camundongos , Gotículas Lipídicas/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Catepsina B/metabolismo , Catepsina B/genética , Lisofosfatidilcolinas/metabolismo , Modelos Animais de Doenças , Masculino , Regulação da Expressão Gênica , Linhagem Celular
2.
Neurospine ; 21(1): 223-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317553

RESUMO

OBJECTIVE: The effect on fat infiltration (FI) of paraspinal muscles in degenerative lumbar spinal diseases has been demonstrated except for spinopelvic parameters. The present study is to identify the effect of spinopelvic parameters on FI of paraspinal muscle (PSM) and psoas major muscle (PMM) in patients with degenerative lumbar spondylolisthesis. METHODS: A single-center, retrospective cross-sectional study of 160 patients with degenerative lumbar spondylolisthesis (DLS) and lumbar stenosis (LSS) who had lateral full-spine x-ray and lumbar spine magnetic resonance imaging was conducted. PSM and PMM FIs were defined as the ratio of fat to its muscle cross-sectional area. The FIs were compared among patients with different pelvic tilt (PT) and pelvic incidence (PI), respectively. RESULTS: The PSM FI correlated significantly with pelvic parameters in DLS patients, but not in LSS patients. The PSM FI in pelvic retroversion (PT > 25°) was 0.54 ± 0.13, which was significantly higher in DLS patients than in normal pelvis (0.41 ± 0.14) and pelvic anteversion (PT < 5°) (0.34 ± 0.12). The PSM FI of DLS patients with large PI ( > 60°) was 0.50 ± 0.13, which was higher than those with small ( < 45°) and normal PI (0.37 ± 0.11 and 0.36 ± 0.13). However, the PSM FI of LSS patients didn't change significantly with PT or PI. Moreover, the PMM FI was about 0.10-0.15, which was significantly lower than the PSM FI, and changed with PT and PI in a similar way of PSM FI with much less in magnitude. CONCLUSION: FI of the PSMs increased with greater pelvic retroversion or larger pelvic incidence in DLS patients, but not in LSS patients.

3.
Front Immunol ; 13: 964138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091018

RESUMO

Macrophages and microglia play important roles in chronic neuroinflammation following spinal cord injury (SCI). Although macrophages and microglia have similar functions, their phagocytic and homeostatic abilities differ. It is difficult to distinguish between these two populations in vivo, but single-cell analysis can improve our understanding of their identity and heterogeneity. We conducted bioinformatics analysis of the single-cell RNA sequencing dataset GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both macrophages and microglia in the subacute and chronic phases of SCI. We then validated these transcriptomic changes in a mouse model of cervical spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and lysosome accumulation in macrophages and microglia following SCI. Finally, we observed that knocking out APOE aggravated neurological dysfunction, increased neuroinflammation, and exacerbated the loss of white matter. Targeting APOE and the related cholesterol efflux represents a promising strategy for reducing neuroinflammation and promoting recovery following SCI.


Assuntos
Apolipoproteínas E , Macrófagos , Microglia , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/imunologia , Biologia Computacional , Macrófagos/imunologia , Camundongos , Microglia/imunologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/imunologia
4.
Orthop Surg ; 14(3): 566-576, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35156312

RESUMO

OBJECTIVE: To investigate the cervical alignment and the relative range of motion (ROM) in patients with basilar invagination (BI). METHODS: A total of 40 BI cases (38.1 years old ± 17.9 years old, 19 male and 21 female) and 80 asymptomatic individuals (33.8 years old ± 10.8 years old, 40 male and 40 female) were included. The Skull-C2 /Skull-BV, Skull-C7 , C2 -C7 /BV-C7 wall angles, C0 -C2 /C0 -BV, C0 -C7 , C1 -C7 , and C2 -C7 /BV-C7 angles were measured in dynamic X-ray images (including neutral, extension, and flexion positions). Correlation between the upper and lower cervical curvatures were analyzed. The total, extension, and flexion ROMs of these angles were calculated, respectively. RESULTS: The BI patients had a smaller C0 -C2 /C0 -BV angle (18.2° ± 16.4° vs 30.9° ± 9.3°), but larger C2 -C7 /BV-C7 (32.2° ± 16.1° vs 19.4° ± 10.6°) and C2 -C7 /BV-C7 wall angles (37.8° ± 17.2° vs 23.6° ± 10.2°) than the control group in neutral position. The upper and lower curvatures correlated negatively in neutral (r = -0.371), extension (r = -0.429), and flexion (r = -0.648) positions among BI patients, as well as in extension position (r = -0.317) among control group. The BI patients presented smaller total ROMs in Skull-C2 /Skull-BV (12.3° ± 16.6° vs 19.7° ± 10.9°), C0 -C2 /C0 -BV (8.1° ± 11.1° vs 17.6° ± 10.5°), and C0 -C7 angles (57.8° ± 14.2° vs 78.3° ± 17.9°), but a larger total ROM in C2 -C7 /BV-C7 wall angle (52.8° ± 13.9° vs 27.0° ± 16.1°) than the control group. The BI patients also presented smaller extension ROMs in Skull-C2 /Skull-BV (6.9° ± 9.4° vs 12.5° ± 9.3°), Skull-C7 (24.5° ± 10.9° vs 30.7° ± 12.5°), and C0 -C2 /C0 -BV angles (4.4° ± 7.8° vs 9.9° ± 8.6°) than the control group. Moreover, the BI patients showed smaller absolute values of flexion ROMs in Skull-C2 /Skull-BV (-5.2° ± 9.4° vs -7.3° ± 8.0°), C0 -C2 /C0 -BV (-3.2° ± 8.8° vs -7.7° ± 8.7°), and C0 -C7 angles (-33.2° ± 13.0° vs -52.8° ± 19.2°), but a larger absolute value of flexion ROM in C2 -C7 /BV-C7 wall angle (-33.9° ± 14.8° vs -8.2° ± 15.1°). CONCLUSION: The cervical spine was stiffer in BI patients than the asymptomatic individuals, especially in the upper cervical curvature. The negative correlation between upper and lower cervical curvatures was more obvious in BI patients.


Assuntos
Vértebras Cervicais , Adulto , Vértebras Cervicais/diagnóstico por imagem , Feminino , Humanos , Masculino , Radiografia , Amplitude de Movimento Articular
5.
FASEB J ; 35(7): e21735, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34143440

RESUMO

Neuroinflammation is recognized as a hallmark of spinal cord injury (SCI). Although neuroinflammation is an important pathogenic factor that leads to secondary injuries after SCI, neuroprotective anti-inflammatory treatments remain ineffective in the management of SCI. Moreover, the molecular signatures involved in the pathophysiological changes that occur during the course of SCI remain ambiguous. The current study investigated the proteins and pathways involved in C5 spinal cord hemi-contusion injury using a rat model by means of 4-D label-free proteomic analysis. Furthermore, two Gene Expression Omnibus (GEO) transcriptomic datasets, Western blot assays, and immunofluorescent staining were used to validate the expression levels and localization of dysregulated proteins. The present study observed that the rat models of SCI were associated with the enrichment of proteins related to the complement and coagulation cascades, cholesterol metabolism, and lysosome pathway throughout the acute and subacute phases of injury. Intriguingly, the current study also observed that 75 genes were significantly altered in both the GEO datasets, including ANXA1, C1QC, CTSZ, GM2A, GPNMB, and PYCARD. Further temporal clustering analysis revealed that the continuously upregulated protein cluster was associated with immune response, lipid regulation, lysosome pathway, and myeloid cells. Additionally, five proteins were further validated by means of Western blot assays and the immunofluorescent staining showed that these proteins coexisted with the F4/80+ reactive microglia and infiltrating macrophages. In conclusion, the proteomic data pertaining to the current study indicate the notable proteins and pathways that may be novel therapeutic targets for the treatment of SCI.


Assuntos
Contusões/metabolismo , Inflamação/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Imunidade/fisiologia , Macrófagos/metabolismo , Masculino , Microglia/metabolismo , Células Mieloides/metabolismo , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
6.
Neural Regen Res ; 16(7): 1323-1330, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33318412

RESUMO

Fine motor skills are thought to rely on the integrity of ascending sensory pathways in the spinal dorsal column as well as descending motor pathways that have a neocortical origin. However, the neurophysiological processes underlying communication between the somatosensory and motor pathways that regulate fine motor skills during spontaneous recovery after spinal cord contusion injury remain unclear. Here, we established a rat model of cervical hemicontusive injury using C5 laminectomy followed by contusional displacement of 1.2 mm (mild injury) or 2.0 mm (severe injury) to the C5 spinal cord. Electrophysiological recordings were performed on the brachial muscles up to 12 weeks after injury to investigate the mechanisms by which spinal cord pathways participate in motor function. After spinal cord contusion injury, the amplitudes of somatosensory and motor-evoked potentials were reduced, and the latencies were increased. The forelimb open field locomotion test, grooming test, rearing test and Montoya staircase test revealed improvement in functions. With increasing time after injury, the amplitudes of somatosensory and motor-evoked potentials in rats with mild spinal cord injury increased gradually, and the latencies gradually shortened. In comparison, the recovery times of somatosensory and motor-evoked potential amplitudes and latencies were longer, and the recovery of motor function was delayed in rats with severe spinal cord injury. Correlation analysis revealed that somatosensory-evoked potential and motor-evoked potential parameters were correlated with gross and fine motor function in rats with mild spinal cord contusion injury. In contrast, only somatosensory-evoked potential amplitude was correlated with fine motor skills in rats with severe spinal cord injury. Our results show that changes in both somatosensory and motor-evoked potentials can reflect the changes in gross and fine motor functions after mild spinal cord contusion injury, and that the change in somatosensory-evoked potential amplitude can also reflect the change in fine motor function after severe spinal cord contusion injury. This study was approved by the Animal Ethics Committee of Nanfang Hospital, Southern Medical University, China (approval No. NFYY-2017-67) on June 11, 2017.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...