Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 6(24): 1902230, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871872

RESUMO

Perovskite quantum dots (PQDs) are a competitive candidate for next-generation display technologies as a result of their superior photoluminescence, narrow emission, high quantum yield, and color tunability. However, due to poor thermal resistance and instability under high energy radiation, most PQD-based white light-emitting diodes (LEDs) show only modest luminous efficiency of ≈50 lm W-1 and a short lifetime of <100 h. In this study, by incorporating cellulose nanocrystals, a new type of QD film is fabricated: CH3NH3PbBr3 PQD paper that features 91% optical absorption, intense green light emission (518 nm), and excellent stability attributed to the complexation effect between the nanocellulose and PQDs. The PQD paper is combined with red K2SiF6:Mn4+ phosphor and blue GaN LED chips to fabricate a high-performance white LED demonstrating ultrahigh luminous efficiency (124 lm W-1), wide color gamut (123% of National Television System Committee), and long operation lifetime (240 h), which paves the way for advanced lighting technology.

2.
Nanoscale ; 11(21): 10410-10419, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31112143

RESUMO

Utilization of light to boost the performance of gas sensors allows us to operate sensor devices at room temperature. Here, we, for the first time, demonstrated an indoor light-activated 3D cone-shaped MoS2 bilayer-based NO gas sensor with ppb-level detection operated at room-temperature. Large-area cone-shaped (CS)-MoS2 bilayers were grown by depositing 2 nm-thick MoO3 layers on a 2'' three-dimensional (3D) cone-patterned sapphire substrate (CPSS) followed by a sulfurization process via chemical vapor deposition. Because the exposed area of MoS2 bilayers is increased by 30%, the CS-MoS2 gas sensor (GS) demonstrated excellent performance with a response of ∼470% and a fast response time of ∼25 s after exposure to 1 ppm of NO gas illuminated by ultraviolet (UV) light with a wavelength of 365 nm. Such extraordinary performance at room temperature is attributed to the enhanced light absorption because of the light scattering effect caused by the 3D configuration and photo-desorption induced by UV illumination. For NO concentrations ranging from 2 ppm down to 0.06 ppm, the CS-MoS2 GS demonstrated a stable sensing behavior with a high response and fast response time (470% and 25 s at 2 ppm NO) because of the light absorption enhanced by the 3D structure and photo-desorption under constant UV illumination. The CS-MoS2 GS exhibits a high sensitivity (∼189.2 R% ppm-1), allowing the detection of NO gas at 0.06 ppm in 130 s. In addition, the 3D cone-shaped structure prolonged the presence of sulfur vapor around MoO3, allowing MoO3 to react with sulfur completely. Furthermore, the CS-MoS2 GS using an indoor lighting to detect NO gas at room temperature was demonstrated for the first time where the CS-MoS2 GS exhibits a stable cycling behavior with a high response (165% at 1 ppm NO) in 50 s; for concentration as low as ∼0.06 ppm, the response of ∼75% in 150 s can be achieved.

3.
Nanoscale Res Lett ; 13(1): 122, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29693213

RESUMO

This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...